Numerical Experiments and Freak Waves
Abstract
In the article the problem of appearence of freak wave at the surface of deep water is considered. Two analytical model are proposed for two-dimensional ideal fluid. The first model is based on the conformal mapping in the ecact Euler equations of the domain occupied by the fluid to the low half-plane. In the second model canonical transformation is applied for approximate Hamiltonian. Simple nonlinear equation for normal canonical variable is derived as the result. Numerical experiments are performed to simulate freak waves formations for both models.
About the Authors
V. E. ZakharovRussian Federation
A. I. Dyachenko
Russian Federation
References
1. Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid // J. Appl. Mech. Tech. Phys. 1968. V.2. P.190–194.
2. Куркин А.А., Пелиновский Е.Н. Волны-убийцы: факты, теория и моделирование. Н.Новгород: Изд-во Нижегородского гос. технического университета, 2004. 158 с.
3. Liu P. A chronology off reaque wave en counters // Geofizika. 2007. V.24, N 1. P.57–70.
4. Kharif C., Pelinovsky E., Slunyaev A. Rogue Waves in the Ocean. Springer–Verlag: Berlin–Heidelberg, 2009. 216 p.
5. Овсянников Л.В. К обоснованию теории мелкой воды // Динамика сплошной среды // Сб. науч. тр. СО АН СССР. Новосибирск: Ин-т гидродинамики. 1973. Вып.15. С.104–125.
6. Дьяченко А.И., Захаров В.Е., Кузнецов Е.А. Нелинейная динамика свободной поверхности идеальной жидкости // Физика плазмы. 1999. Т.22, № 10. С.916–928.
7. Дьяченко А.И. О динамике идеальной жидкости со свободной поверхностью // Докл. АН. 2001. Т.376, № 1. С.27–29.
8. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface // Eur. J. Mech. B Fluids. 2002. V.21. P.283–291.
9. Chalikov D., Sheinin D. Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface // J. Comp. Phys. 2005. V.210. Р.247–273.
10. Ruban V.P. Water waves over a time-dependent bottom: Exact description for 2D potential flows // Phys. Let. A. 2005. V.340, N 1–4. P.194–200.
11. Шамин Р.В. Об оценке времени существования решений уравнения, описывающего поверхностные волны // Докл. АН. 2008. Т.418, № 5. С.603–604.
12. Dyachenko A.I., Kuznetsov E.A., Spector M.D., Zakharov V.E. Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping) // Phys. Let. A. 1996. V.221. P.73– 79.
13. Lighthill M.J. Contributions to the Theory of Waves in Non-linear Dispersive Systems // J. Appl. Math. 1965. V.1, N 3. P.269–306.
14. Захаров В.Е. Об устойчивости волн в нелинейных средах с дисперсией // ЖЭТФ. 1966. Т.51, № 4. С.1107–1114.
15. Benjamin T.B., Feir J.E. The disintegration of wave trains on deep water. Part 1. Theory // J. Fluid Mech. 1967. V.27. P.417–430.
16. Zakharov V.E., Dyachenko A.I., Prokofiev A.O. Freak waves: Peculiarities of Numerical Simulations // Extreme Ocean Waves / Eds. E.Pelinovsky, C Harif. Springer, 2008. P.1–30.
17. Zufiria J.A., Saffman P.G. The superharmonic instability of finite-amplitude surface waves on water of finite depth // Stud. Appl. Maths. 1986. V.74, N 3. P.259–266.
18. Meiron D., Orzag S., Israeli M. Applications of numerical conformal mapping // J. Com. Phys. 1981. V.40, N 2. P.345–360.
19. Dyachenko A.I., V.E.Zakharov V.E. Is the free-surface hydrodynamics an integrablesystem? // Phys. Let. A. 1994. V.190. P.144–148.
20. Dyachenko A.I., Zakharov V.E. On the Formation of Freak Waves onthe Surface of Deep Water // JETP Let. 2008. V.88, N 5. P.307–311.
21. Zakharov V.E., Dyachenko A.I. About Shape of Giant Breather // European Journal of Mechanics, B/Fluids. 2010. V.29, N 2. P.127–131.
22. Dyachenko A.I., Zakharov V.E. Compact equation for gravity waves on deep water // JETP Let. 2011. V.93, N 12. P.701–705.
23. Dyachenko A.I., Zakharov V.E. On dynamical equation for water waves in one horizontal dimension // European J. of Mechanics, B/Fluids. 2011. Accepted Manuscript, Available online 7 September, 2011.
24. Krasitskii V.P. Canonical transformation in a theory of weakly nonlinear waves with a nondecay dispersion law // Sov. Phys. JETP. 1990. V.71. P.921–927.
25. Zakharov V.E., Lvov V.S., Falkovich G. Kolmogorov Spectra of Turbulence I, Springer–Verlag. 1992. 263 p.
Review
For citations:
Zakharov V.E., Dyachenko A.I. Numerical Experiments and Freak Waves. Fundamental and Applied Hydrophysics. 2012;5(1):64-76. (In Russ.)