ГИДРОФИЗИЧЕСКИЕ И БИОГЕОХИМИЧЕСКИЕ ПОЛЯ И ПРОЦЕССЫ
Решается краевая задача для уравнений движения, неразрывности, конституентов плотности и характеристик турбулентности в 3D-области северных Курильских проливов с граничными условиями, определяемыми решением глобальной модели. Краевая задача реализуется методом конечных объемов на неструктурированной сетке в гидростатическом приближении. Детализированное моделирование приливной динамики Четвертого пролива выполняется в негидростатической постановке. Результаты представляют поля скоростей приливной волны М2 и суммарного прилива восьми гармоник M2, S2, N2, K2, K1, О1, P1, Q1 с синодическим периодом 29.5 суток и остаточную циркуляцию в регионе гряды. Дается сравнение хода вертикальной скорости в приливном цикле волны М2 для двух подобластей Четвертого пролива при решении краевой задачи в негидростатической постановке и в гидростатическом приближении. Приводится диаграмма Хоффмюллера хода динамических характеристик в синодическом месяце. На примере Четвертого пролива показано, что учет динамической компоненты давления необходим для корректного определения транспорта через Курильские проливы.
Проводится анализ субмезомасштабных вихрей, обнаруженных в южной части залива Петра Великого в сентябре 2009 г., как процесса, оказывающего влияние на стратификацию оптически активных компонентов в верхнем слое моря, и значения коэффициентов яркости моря. Для анализа перемещения вихрей использовались спутниковые данные 2 уровня среднего пространственного разрешения спектрорадиомтеров MODIS-Terra/Aqua, Merris-ENVISAT-1 (размер пикселя 250—1000 м) в полях температуры поверхности моря, концентрации хлорофилла-а и синтезированные RGB изображения, а также судовые данные, полученные в серии прибрежных экспедиций ТОИ ДВО РАН за сентябрь 2009 г. Дополнительно использовались дистанционные измерения спектров коэффициентов яркости моря c борта судна с помощью ручного гиперспектрального радиометра ASD FieldSpec Hand Held.
В результате было определено, что вихри характеризуются пониженной соленостью и повышенным содержанием окрашенного растворенного органического вещества (ОРОВ), что может быть обусловлено влиянием стока р. Туманной. В дистанционных данных наибольший контраст вихря относительно прилегающих вод достигается на длине волны – 412 нм. Также, контраст проявления вихря заметен в дистанционных определениях концентрации хлорофилла-а. Глубина основной части вихря составила 5—7 м и полностью находится в зоне, наблюдаемой со спутника в видимом спектральном диапазоне.
Моделирование северной части собственно Балтийского моря с очень высоким разрешением показывает, что летом образуются циклонические и антициклонические субмезомасштабные когерентные вихри (СКВ) с экстремумом вертикальной завихренности в поверхностном слое, в то время как подповерхностные антициклонические СКВ в форме выпуклых линз в поле плотности преобладают над циклоническими СКВ – вогнутыми линзами с экстремумом вертикальной завихренности в холодном промежуточном слое ниже сезонного термоклина и выше перманентного галоклина. Зимой сезонный термоклин и холодный промежуточный слой сменяются относительно глубоким конвективно-перемешанным слоем, что делает невозможным образование подповерхностных вогнутых циклонических и выпуклых антициклонических линз. Вместо этого преобладают зимние циклонические СКВ с экстремальной вертикальной завихренностью на поверхности. Ядро зимних циклонических СКВ характеризуется отрицательной температурной аномалией во всем конвективно-перемешанном слое. В течение своего жизненного цикла длительностью до нескольких месяцев и более, смоделированный СКВ может многократно сливаться с другими СКВ того же знака завихренности, и слияние делает вихрь сильнее, тем самым способствуя его долговечности.
ВЗАИМОДЕЙСТВИЕ МОРСКИХ ОБЪЕКТОВ, ОКЕАНА И АТМОСФЕРЫ
В статье рассмотрены базовые принципы создания современных систем оперативной океанографии. Совокупность базовых принципов представлена в виде методических основ построения систем оперативной океанографии в приложении к задачам подводного наблюдения. Охарактеризованы принципиально важные для приложений в области морских систем наблюдения свойства таких систем. Обсуждены некоторые проблемные вопросы. Рассмотрена связь инструментария оперативной океанографии с рядом прикладных задач. Среди задач уделено внимание акустическому подводному наблюдению, оптическим инструментам и моделям, биохимическим процессам и моделям. Среди базовых принципов одним из наиболее важных признано последовательное вложение локальных моделей и систем в региональные системы и далее в глобальные системы, а также сопряжение моделей и систем различного уровня. Процессы вложения и сопряжения сопровождаются уточнением начальных и граничных условий с использованием
ассимиляции натурных данных. Качество выходных результатов прикладных систем зависит от качества оценок состояния океанической среды и является основой для предъявления требований к точности (неопределенности) систем оперативной океанографии. Анализ последовательной передачи неопределенности от оценок состояния океанической среды к неопределенности выходного результата прикладных систем подводного наблюдения также является базовым принципом. Состоятельность и практическая полезность систем оперативной океанографии в задачах подводного наблюдения прямо связаны с удовлетворением идущих от приложений требований. Качество систем оперативной океанографии связывается с процедурами адаптивной выборки натурных данных и адаптивным моделированием.
ГИДРОАКУСТИКА
Конкретизируются существующие методические подходы к практическому использованию океанологических данных в интересах организации применения гидроакустических средств при ведении поиска районах, характеризующихся высокой изменчивостью среды. На основе анализа публикаций, посвященных описанию систем оперативной океанологии, сформированы количественные характеристики их выходных параметров, являющихся исходными данными для решения задач оптимизации применения гидроакустических средств. Сформулирована общая постановка задачи оптимального управления гидроакустическими средствами в условиях пространственно-временной изменчивости среды. Приведено решение задачи оптимального управления с использованием метода районирования и математического аппарата теории поиска. Показана роль и место систем гидроакустических расчетов при решении задачи оптимизации. В качестве методического подхода предложено использование объема зон наблюдения как универсального параметра, характеризующего интегральную оценку влияния среды, параметров и режимов работы гидроакустических средств на их возможности. Приведен пример, иллюстрирующий методические подходы к оптимизации применения гидроакустических средств при решении задачи поиска подвижным наблюдателем в океанском районе с высокой пространственно-временной изменчивостью. Сделаны выводы о возможности распространения приведенных в статье методических подходов на решение задачи оптимизации применения гидроакустических средств группы подвижных наблюдателей, а также на решение задачи оптимизации скрытности действий наблюдателя в условиях пространственно-временной изменчивости среды. В заключении приводятся рекомендации по построению программных и программно-аппаратных средств, обеспечивающих решение прикладных задач, использующих данные оперативной океанологии.
Предложен статистический метод оценки эффективности согласованной со средой обработки на основе оценки вероятностной характеристики выбранного случайного показателя SINR, вероятности значений которого распределены по закону минимального значения Гумбеля. Статистический метод предназначен для обработки данных натурных испытаний или модельных исследований гидроакустических приемных систем. В основу оценки вероятностной характеристики показателя SINR положен статистический анализ результатов согласованной со средой обработки сигналов в целях оценки параметров распределения этого показателя в конкретных условиях функционирования приемной системы. Приводятся примеры использования метода при моделировании согласованных со средой приемных систем для решения задач сравнения качества обработки в условиях рассогласования свойств модельного и реального волноводов, а также наличия случайных ошибок измерения параметров волновода. Моделирование результатов обработки при этом осуществлялось с использованием программного комплекса SonarMFP, разработанного АО «СПИИРАН-НТБВТ» и предназначенного для расчета функции неопределенности источника акустического сигнала при согласованной со средой обработке с использованием технологий географических информационных систем. Показано, что полученные результаты позволяют количественно сравнивать с использованием вероятностных мер согласованные со средой приемные системы, работающие в различных условиях. Метод также может быть полезен при выработке требований к информационному обеспечению приемных систем на принципах согласованной со средой обработки.
На основе лабораторного анализа и обработки случайной выборки натурных записей шумов надводных кораблей, произведенных в акваториях Белого, Баренцева и Норвежского морей проведено исследование влияния сверхмедленных флуктуаций сигнала на помехоустойчивость шумопеленгования. Экспериментально установлено, что в условиях флуктуаций можно обеспечить потенциально высокую помехоустойчивость, если использовать одновременно два времени накопления: малое – несколько секунд и большое – до ста и более секунд. При этом большое время накопления снижает вероятность потери контакта в период флуктуационного снижения уровня сигнала, а малое время накопления может дать существенный выигрыш в дальности обнаружения в интервалы времени, когда процесс флуктуации приводит к кратковременному возрастанию уровня сигнала.
Приведены результаты экспериментальных и теоретических исследований по распространению и приему в подводных звуковых каналах широкополосных импульсных сигналов на основе псевдослучайных последовательностей. Анализ экспериментально полученных импульсных характеристик указывает на наличие предпосылок для повышения помехоустойчивости приема навигационных и командных сигналов, а также увеличения дальности действия при неизменной мощности излучения. Цель специально выполненных экспериментальных работ заключалась в получении исходных данных для повышения эффективности навигационных систем дальнего радиуса действия путем оптимизации характеристик излучаемых сигналов. Исследованы особенности формирования импульсных откликов при приеме сигналов с различной частотной полосой и длительностью символов, а также динамика структуры откликов при смещениях глубины приёмного гидрофона относительно оси подводных звуковых каналов. На основе лучевых представлений осуществлена физическая интерпретация полученных экспериментальных результатов для практического применения в решении актуальных задач гидроакустики и океанологии.
Приведена классификация известных решений граничной задачи Пекериса, полученных в различных модельных постановках, и дана их сравнительная оценка. Для верификации различных модельных решений выполнено экспериментальное исследование энергетической и пространственной структуры звукового поля в условиях мелкого моря в инфразвуковом диапазоне частот 2—20 Гц, заведомо меньших первой критической частоты модельного волновода Пекериса. Анализируются результаты экспериментальных исследований звуковых полей с использованием комбинированных приёмников, образующих вертикально ориентированную 3-элементную антенну. По результатам анализа вертикальной структуры звукового поля был сделан вывод о том, что звуковое поле на предельно низких частотах инфразвукового диапазона сформировано неоднородными волнами Рэлея–Шолте, регулярной и обобщённой. С увеличением частоты уменьшается глубина проникновения звуковой волны в донное полупространство и возрастает роль неоднородных волн волновода Пекериса, возбуждаемых комплексным угловым спектром источника. Такие волны появляются как гибридные, но только при обобщённом описании звукового поля в несамосопряжённой модельной постановке. Анализируются кинематические характеристики звукового поля при уточнённом определении групповой скорости как скорости переноса энергии. Обсуждаются механизмы существенного замедления скорости переноса энергии в волноводе на низких частотах.
ГИДРООПТИКА
Настоящая работа продолжает цикл работ по исследованию возможностей использования подводных изображений небосвода (круга Снеллиуса) для оценки состояния взволнованной водной поверхности, в том числе в поле приповерхностных гидрофизических процессов и в присутствии пленочных загрязнителей. На основе разработанных ранее математических моделей изображений круга Снеллиуса и его первых двух статистических моментов, а также модели спектра ветрового волнения Эльфохейли, модели тонкой пленки Ермакова и эмпирических результатов Кокса-Манка для толстой пленки продемонстрирована чувствительность структуры границы круга Снеллиуса к изменениям ветроволновой обстановки и к пленкам различных вязкоупругих характеристик. Полученные теоретические результаты подкреплены результатами анализа изображений из натурного эксперимента, когда искусственный пленочный слик пересекал область визирования, оказывая заметное влияние на структуру волнения. На основе полученных результатов сформулированы практические возможности обнаружения поверхностных загрязнителей и их различения с проявлениями на водной поверхности других процессов, например, ветровой тенью.
ТЕХНИЧЕСКАЯ ГИДРОФИЗИКА
Разработан метод обработки сигналов судового радиометрического поляризационного лидара, позволивший надежно и достаточно точно определить положение границы между слоями, различающимися по гидрооптическим характеристикам. Метод основан на анализе временной зависимости спада эхо-сигнала и позволяет фиксировать изменение положения границы с течением времени в отсутствие слоя повышенного светорассеяния. Модельные расчеты лидарных эхо-сигналов для двухслойной стратификации гидрооптических характеристик показали наличие резких изменений временной зависимости затухания эхо-сигнала в районе границы между слоями, особенно ярко проявляющейся в кросс-поляризованной компоненте эхо-сигнала. Выполнен долговременный цикл лидарного зондирования толщи морской воды. Измерения проводились с борта судна в дрейфе. Сопутствующие измерения гидрофизических характеристик и показателя ослабления света морской водой зондом SBE25 с прозрачномером в районе проведения экспериментальных исследований показали наличие границы между слоями на глубинах 15—17 м, приуроченной к глубине залегания пикноклина. В результате обработки и анализа полученного массива данных лидарного зондирования зарегистрированы периодические изменения положения границы между слоями. Максимальная зарегистрированная амплитуда составляет 3 м, а средний период колебаний – 8.5 мин. Полученные значения характерны для внутренних волн, наблюдаемых в шельфовой зоне Черного моря.
ИСТОРИЯ НАУКИ И ТЕХНИКИ В ОБЛАСТИ ГИДРОФИЗИКИ
ХРОНИКА
ISSN 2782-5221 (Online)