The Automatic Target Recognition Algorithm Based on the Signal Modulation Analyses
Abstract
Amplitude modulation of the sea vessel noise is widely used for automatic target recognition. Using the amplitude modulation parameters one can determine the vessel type; her displacement; the number of shafts and propeller blades; the velocity; the moment of course or velocity changing. There are two types of amplitude modulation: shaft and blade modulation due to the cavitations on the blade at large speed of rotation and roll and pitch modulation due to periodical changing of submerged part of the vessel. The paper contains the syntheses of optimal maximum likelihood automatic target recognition algorithm on base of amplitude modulation of their signals. It is shown that the same algorithm can be used both individually and as a part of the complex algorithm using several signal parameters. The effectiveness of automatic target recognition algorithm is investigated.
About the Authors
A. I. MashoshinRussian Federation
Saint-Petersburg
Y. V. Shafranyuk
Russian Federation
Saint-Petersburg
References
1. Tuteur F. B. Detection of wide-band signals modulated by a low-frequency sinusoid. Processing of Data from Sonar Systems; R. A. MacDonald; et al. Ed.; Appendix A-4; Yale University; New Haven; Conn; USA. 1963. AD-420575.
2. D'Assupcao H. A. Theoretical assessment of DEMON performance. Technical Memorandum WRE-CPD-TM169; 1970. http://dspace.dsto.defence.gov.au/dspace/handle/1947/9119 (date of access 12.03.2012).
3. Rajagopal R.; Sankaranarayanan B.; Ramakrishna Rao P. Target classification in a passive sonar–an expert system approach. Speech Processing. 1990; April; 5; 2911—2914.
4. Nielsen R. O. Sonar Signal Processing. Northwood; MA; Artech House Inc.; 1991; 384 p.
5. Kummert A. Fuzzy technology implemented in sonar systems. IEEE Journal of Oceanic Engineering. 1993; 18; 4; 483—490.
6. Kudryavtsev A. A.; Luginets K. P.; Mashoshin A. I. Amplitude modulation of underwater noise produced by seagoing vessels. Acoustical Physics. 2003; 49; 2; 184—188.
7. Stolkin R.; Sutin A.; Radhakrishnan S. et al. Feature based passive acoustic detection of underwater threats. Photonics for Port and Harbor Security II. Proceedings of SPIE. 2006; 40—49.
8. Li S.; Yang D. DEMON feature extraction of acoustic vector signal based on 3/2-D spectrum. Proc. the 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA). May 2007; Harbin; 2239—2243.
9. Fillinger L.; Sutin A.; Sedunov A. Cross-correlation of ship noise for water traffic monitoring. Tech. Rep.; Acoustical Society of America; 158th Meeting Lay Language Papers. 2009. http://www.acoustics.org/press/158th/fillinger.htm (date of access 15.03.2012).
10. Bao F.; Wang X.; Tao Z.; Wang Q.; Du S. Adaptive extraction of modulation for cavitation noise. Journal of the Acoustical Society of America. 2009; 126; 6; 3106—3113.
11. Sutin A.; Bunin B. Acoustic research for port protection at the Stevens Maritime Security Laboratory. Proceedings of the 3rd International Conference and Exhibition on Underwater Acoustic Measurements: Technologies & Results. Nafplion; Greece; June 2009; 6 p.
12. Sutin A.; Bunin B.; Sedunov A.; Sedunov N.; Fillinger L.; Tsionskiy M.; Bruno M. Stevens Passive Acoustic System for underwater surveillance. Proc. International Waterside Security Conference (WSS). 2010; 3—5 Nov.; Marina di Carrara; 1—6.
13. Chung K. W.; Sutin A.; Sedunov A.; Bruno M. DEMON Acoustic Ship Signature Measurements in an Urban Harbor. Advances in Acoustics and Vibration. 2011; Article ID 952798; 13 p.
14. Fillinger L.; Sutin A.; Sedunov A. Acoustic ship signature measurements by cross-correlation method. Journal of the Acoustical Society of America. 2011; 129; 2; 774—778.
15. Mashoshin A. I. Optimization of a Device for Detecting and Measuring Parameters of Amplitude Modulation of Underwater Noise Emission of Seagoing Vessels. Acoustical Physics. 2013; 59; 3; 305—311.
16. Mashoshin A. I. The peculiarities of sea objects classification algorithms synthesis using their hydroacoustic field. Morskaya radioelektronika. 2009; 2 (28); 8—12 (in Russian).
17. Kendall M. G.; Stuart A. The Advanced Theory of Statistics. V. 2. London; Charles Griffin; 1967; 899 p.
18. Ventsel’ E. S.; Ovcharov L. A. The theory of probabilities and its engineering applications. Moscow; Nauka; 1988; 480 p. (in Russian).
19. Mashoshin A. I.; Shafranjuk J. V. The comparing results of the broad signal amplitude modulation detection and parameters measuring devices. Trudi XI Vserossiskoy conferentsii «Prikladnie tehnologii gidroakustiki I gidrofiziki»; Saint-Petersburg; Nauka; 2012; 372—375.(in Russian).
Review
For citations:
Mashoshin A.I., Shafranyuk Y.V. The Automatic Target Recognition Algorithm Based on the Signal Modulation Analyses. Fundamental and Applied Hydrophysics. 2014;7(4):78-85. (In Russ.)