Harmonic Wave Deep Water Transformation
Abstract
Precise numerical model of potential; surface waves is used to investigate the wave field evolution, initially assigned as a train of harmonic waves. It is shown that harmonic wave of any amplitude quickly generates the new modes, which undergo the complicated evolution. These modes can be referred neither to bound waves nor to free waves.
About the Author
D. V. ChalikovRussian Federation
References
1. Benjamin T.B., Feir J.E. The disintegration of wave trains in deep water // J. Fluid. Mech. 1967. 27. Р.417– 430.
2. Hasselmann K. Weak-interaction theory of ocean waves. Hamburg: Univ. of Hamburg, 1967. 112 p.
3. Chalikov D., Sheinin D. Direct Modeling of One-dimensional Nonlinear Potential Waves. Nonlinear Ocean Waves. Еd. W.Perrie // Advances in Fluid Mechanics. 1998. 17. Р.207–258.
4. Chalikov D., Sheinin D. Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface // Journ. Comp. Phys. 2005. 210. Р.247–273.
5. Chalikov D. Statistical properties of nonlinear one-dimensional wave fields // Nonlinear processes in geophysics. 2005. 12. Р.1–19.
6. Chalikov D. Numerical simulation of Benjamin-Feir instability and its consequences // Phys. Fluids. 2007. 19.
7. Crapper G.D. An exact solution for progressive capillary waves of arbitrary amplitude // J. of Fluid Mech. 2007. 96. Р.417–445.
8. Dold J.W. An Efficient Surface-Integral Algorithm Applied to Unsteady Gravity Waves // J. of Comp. Phys. 1992. 103. Р.90–115.
Review
For citations:
Chalikov D.V. Harmonic Wave Deep Water Transformation. Fundamental and Applied Hydrophysics. 2010;(3):14-21. (In Russ.)