Preview

Fundamental and Applied Hydrophysics

Advanced search

Modeling of the Stationary Circulation and Semidiurnal Surface and Internal Tides in the Strait of Kara Gates

Abstract

A series of numerical experiments is carried out for simulation of the stationary circulation and semidiurnal surface and internal tides in the region of the Kara Gates Strait. They are caused by either stationary contrasts of the free surface level at the open boundary of the domain under study, or by tidal elevations at the above boundary, or by means of both concurrently. It is shown that the predicted amplitudes of internal tidal waves on the bottom uplift in the strait amount to about 10—16 m under mean (over a syzygy-quadrature cycle) conditions. It is remarkable that the maximum internal tidal waves’ amplitudes are detected where internal tidal waves propagate against the stationary flow. Modeling results also show the slight western Litke current, a tendency to the appearance of the degenerate amphidrome with its center at the Vaigach Island and changes in tidal phases from 0 to 30° and from 330 to 0° in the adjacent parts of the Batrents and Kara Seas, respectively. 

About the Authors

B. A. Kagan
Saint-Petersburg Department of the P.P.Shirshov Institute of Oceanology of RAS
Russian Federation


A. A. Timofeev
Saint-Petersburg Department of the P.P.Shirshov Institute of Oceanology of RAS
Russian Federation


References

1. Morozov E. G., Pisarev S. V., Erofeeva S. Yu. Internal waves in the Russian Arctic seas. In: Surface and internal waves in the Arctic Ocean / Eds. I. V. Lavrenov, E. G. Morozov. Saint-Petersburg, Gidrometeoizdat, 2002, 217—234 (in Russian).

2. Morozov E. G., Parrilla-Barrera G., Velarde M. G., Scherbinin A. D. The straits of Gibraltar and Kara Gates: a comparison of internal tides. Oceanologica Acta. 2003, 26, 231—241.

3. Baines P. G. On internal tide generation models. Deep-Sea Res. 1982, 29, 307—328.

4. Hibiya T. Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res. 1986, 91, 7697—7708.

5. Nakamura T., Awaji T. The generation of large-amplitude unsteady lee waves by subinertial K1 tidal flow: a possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr. 2000, 30, 7, 1601—1621.

6. Nakamura T., Awaji T. A growth mechanism for topographic internal waves generated by an oscillatory flow. J. Phys. Oceanogr. 2001, 31, 8, 2511—2524.

7. Lynch D. R. Three-dimensional diagnostic model for baroclinic, wind-driven and tidal circulation in shallow seas. FUNDY-4 User's Manual. Darthmouth College, Hanover, New Hampshire, Report Number NML-90-2, 1990. 23 p.

8. Lynch D. R., Gray W. G. A wave equation model for finite element tidal computations. Computers and Fluids. 1979, 7, 207—228.

9. Lynch D. R., Werner F. E. Three-dimensional hydrodynamics on finite elements. Part 1: Linearized harmonic model. Int. J. Numer. Meth. in Fluids. 1987, 7, 871—909.

10. Lynch D. R., Werner F. E. Three-dimensional hydrodynamics on finite elements. Part 2: Nonlinear time-stepping model. Int. J. Numer. Meth. in Fluids. 1991, 12, 507—533.

11. Lynch D. R., Werner F. E., Greenberg D. A., Loder J. W. Diagnostic model for baroclinic and wind-driven circulation in shallow seas. Cont. Shelf Res. 1992, 12, 37—64.

12. Ip J.T.C., Lynch D. R. QUODDY-3 User's Manual: Comprehensive coastal circulation simulation using finite elements: Nonlinear prognostic time-stepping model. Thayer School of Engineering, Darthmouth College, Hanover, New Hampshire, Report Number NML-95-1, 1995.

13. Padman L., Erofeeva S. A barotropic reverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 2004, 31, L02303, doi: 10.1029/2003GL019003.

14. Rio M. H., Guinehut S., Larnicol G. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res. 2011, 116, C07018, doi: 10.1029/2010JC006505.

15. Joint US-Russian Atlas of the Arctic Ocean. Oceanography Atlas for the summer period / Ed. by E. Tanis, L. Timokhov. Environmental Working Group, University of Colorado, Media Digital. doi: 10.7265/N5H12ZX4.

16. Smagorinsky J. General circulation experiments with the primitive equations. Month. Wea. Rev. 1963, 91, 99—164.

17. Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems. Rev. of Geophys. Space Phys. 1982, 20, 851—875.

18. Egbert G., Erofeeva S. Efficient inverse modeling of barotropic ocean tides. Atmos. Ocean Techol. 2002, 19, 2, 183—204.

19. Pavlov V. K., Pfirman S. L. Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution. DeepSea Res. II.1995, 42, 6, 1369—1390.

20. Morozov E. G., Paka V. T., Bakhanov V. V. Strong internal tides in the Kara Gates Strait. Geophys. Res. Let. 2008, 35, 16, L16603.


Review

For citations:


Kagan B.A., Timofeev A.A. Modeling of the Stationary Circulation and Semidiurnal Surface and Internal Tides in the Strait of Kara Gates. Fundamental and Applied Hydrophysics. 2015;8(3):72-79. (In Russ.)

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)