Preview

Fundamental and Applied Hydrophysics

Advanced search

Modelling of the Evolution of the Internal Boron in the Pechora Sea

Abstract

The numerical modeling of dynamics of the internal bore is done for the area in the Pechora Sea where the internal bore had been observed. The bore record obtained in 1998 is used as initial condition for numerical model based on the Gardner equation and analysis of bore evolution is done. The influences of hydrology variations and wave dissipation in the bottom boundary layer as well as the horizontal diffusion on the forecasted wave shape have been studied. It is shown that although internal wave characteristics are responsive to these factors nevertheless the abrupt overfall of isotherms in the thermocline (internal bore) is saved in one-two kilometers from the point of observation, and after that it is transformed into solibore (shock wave with ondulations). The process of internal bore generation from the train of nonlinear internal waves is studied as the result of the dispersive focusing. 

About the Authors

T. G. Talipova
Institute of Applied Physics of RAS; Nizhny Novgorod State Technical University
Russian Federation

Nizhny Novgorod



O. E. Kurkina
Nizhny Novgorod State Technical University
Russian Federation

Nizhny Novgorod



A. A. Naumov
Nizhny Novgorod State Technical University
Russian Federation

Nizhny Novgorod



A. A. Kurkin
Nizhny Novgorod State Technical University
Russian Federation

Nizhny Novgorod



References

1. Holloway P. Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res. 1987, 92, 5405—5416.

2. Wesson J. C., Gregg M. C. Turbulent dissipation in the strait of Gibraltar and associated mixing. Small-Scale Turbulence and Mixing in the Ocean. Eds. J. Nihoul, B. Jamart. NY., Elsevier Sci., 1988. P. 201—212.

3. Farmer D., Arni L. The flow of Atlantic Water through the Strait of Gibraltar. Prog. Oceanogr. 1988, 21, 1—10.

4. Goryachkin Yu. N., Grodsky S. A., Ivanov V. A., Kudryavtsev V. N., Lisichenok A. D., Pelinovsky E. N. Several days observation of the internal wave packet evolution. Izvestija. Atmospheric and Oceanic Physics. 1991, 27, 3, 224 —229.

5. Small J., Sawyer T. C., Scott J. C. The evolution of an internal bore at the Malin shelf break. Ann. Geophysicae. 1999, 17, 547—565.

6. Colosi J., Beardsley R., Lynch J., Gawarkiewicz G., Chiu C.-S., Scotti A. Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study. J. Geoph. Res. 2001, 106(C5), 958—960.

7. Sherwin T., Vlasenko V., Stashchuk N., Jeans D. G., Jones B. Along-slope generation as an explanation for some unusually large internal bores. Deep-Sea Res. 2002, 49, 1787—1799.

8. Vlasenko V., Stashchuk N., Hutter K., Sabinin K. Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Res. 2003, 50, 317—318.

9. Shapiro G. I., Shevchenko V. P., Lisitsyn A. P., Serebryany A. N., Politova N. V., Akivis T. M. Influence of internal waves on the suspended sediment distribution in the Pechora Sea. Doklady Earth Sciences. 2000, 373, 5, 899—901.

10. Kurkina O., Talipova T. Huge internal waves in the vicinity of Spitsbergen Island (Barents Sea). Natural Hazards Earth System Sciences. 2011, 11, 981—986.

11. Holloway P., Pelinovsky E., Talipova T. Internal tide transformation and oceanic internal solitary waves / Chapter 2 in the book: Environmental Stratified Flows (Ed. By R. Grimshaw). Kluwer Acad. Publ., 2001. P. 29—60.

12. Talipova T. G., Pelinovsky E. N. Simulation of long propagating internal waves in inhomogeneous ocean: Theory and verification. Fundam. prikl. gidrofiz. 2013, 6, 2, 46—54 (in Russian).

13. Jeans D. R. G., Sherwin T. J. The variability of strongly nonlinear solitary internal waves observed during an upwelling season on the Portuguese shelf. Cont. Shelf Res. 2001, 21, 1855—1878.

14. Talipova T. G., Pelinovsky E. N., Kurkin А. А., Kurkina О. Е. Modeling of long internal wave dynamics on the shelf. Izvestiya, Atmospheric and Oceanic Physics. 2014, 50, 6, 714—722.

15. Jonson D., Weidemann A. A tidal plume front and internal solitons. Continental Shelf Res. 1998, 18, 923—928.

16. Garvine R. W., Monk J. D. Frontal structure of river plume. J. Geophys. Res. 1974, 79, 2251—2257.

17. Luketina D. A., Imberger J. Characteristics of a surface buoyant jet. J. Geophys. Res. 1987, 92, 5435—5447.

18. Joint U. S. Russian Atlas of the Arctic Ocean. University of Colorado, Boulder, CO P.B. 449, 80309-0449, 1998.

19. Fofonoff N., Millard R. Jr. Algorithms for computation of fundamental properties of seawater // UNESCO Technical Papers in Marine Science. 1983. N. 44. P. 15—25.

20. Holloway P., Pelinovsky E., Talipova T., Barnes B. A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf. J. Physical Oceanography. 1997, 27, 6, 871—896.

21. Holloway P., Pelinovsky E., Talipova T. A generalized Korteweg—de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res. 1999, 104(C8), 18333—18350.

22. Grimshaw R., Pelinovsky E., Talipova T. Modeling Internal solitary waves in the coastal ocean. Survey in Geophysics. 2007, 28, 2, 273—298.

23. Grimshaw R., Pelinovsky E., Talipova T., Kurkina O. Internal solitary waves: propagation, deformation and disintegration. Nonlinear Processes in Geophysics. 2010, 17, 633—649.

24. Grimshaw R., Pelinovsky E., Stepanyants Yu., Talipova T. Modeling internal solitary waves on the Australian North West Shelf. Marine and Freshwater Research. 2006, 57, 3, 265—272.

25. Guerra V., Tapia R. A. A local procedure for error detection and data smoothing / MRC Technical Summary Rep. 1452, Math. Res. Center, University of Wisconsin, Madison, USA. 1974.

26. Grimshaw R. Internal solitary waves / Chapter 1 in the book: Environmental Stratified Flows (Ed. By R. Grimshaw). Kluwer Acad. Publ., 2001. P. 3—28.

27. Liu K., Chang Y. S., Hsu M.-K., Liang N. K. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res. 1998, 103(C4), 7995—8008.


Review

For citations:


Talipova T.G., Kurkina O.E., Naumov A.A., Kurkin A.A. Modelling of the Evolution of the Internal Boron in the Pechora Sea. Fundamental and Applied Hydrophysics. 2015;8(3):62-71. (In Russ.)

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)