Preview

Fundamental and Applied Hydrophysics

Advanced search

Transformation of Large Amplitude Internal Waves Over a Shelf

Abstract

The propagation of finite amplitude internal waves over an uneven bottom is considered. One of the specific features of the large amplitude internal waves is the ability of the waves to carry fluid in the «trapped core» for a long distance. The velocity of particles in the «trapped core» is very close and, even, exceeds the wave speed. Such waves are detected in different parts of seas and oceans as internal waves of depression and elevation as well as short intrusions at interfaces. Laboratory experiments on the generation, interaction and decay of solitary waves in a two-layer fluid are discussed. Analytical and numerical solutions describing the evolution of internal waves in a shelf zone are constructed by the three-layer shallow water model. Laboratory investigations of the different types of internal waves (bottom, subsurface and interlayer waves) are demonstrated, that the model can be effectively applied to the numerical solution of unsteady wave motions, and the travelling waves, which can be found from the model in rather simple form, give the realistic form and governing parameters of internal waves in laboratory and field observations. The basic features of the large amplitude solitary waves and nonlinear wave trains evolution over a shelf can be represented by the model. 

About the Authors

N. V. Gavrilov
Lavrentyev Institute of Hydrodynamics Siberian Branch of RAS
Russian Federation

Novosibirsk



V. Yu. Liapidevskii
Lavrentyev Institute of Hydrodynamics Siberian Branch of RAS; Novosibirsk State University
Russian Federation

Novosibirsk



Z. A. Liapidevskaya
Institute of Computational Mathematics and Mathematical Geophysics Siberian Branch of RAS
Russian Federation

Novosibirsk



References

1. Helfrich K. R., Melville W. K. Long nonlinear internal waves. Ann. Rev.Fluid Mech. 2006, 38, 395—425.

2. Scotti A., Pineda J. Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophy. Res. Let. 2004, 31, L22307, 1—5.

3. Stevens C. L., Fisher T. S. R., Lawrence G. A. Turbulent layering beneath the pycnocline in a strongly stratified pit lake. Limnol. Oceanogr. 2005, 50, 1, 197—206.

4. Davis R. E., Acrivos A. Solitary internal waves in deep water. J. Fluid Mech. 1967, 29, 593—608.

5. Maxworthy T. On the formation of nonlinear internal waves from the gravitational collapse of mixing regions in two and three dimensions. J. Fluid Mech. 1980, 96, 47—64.

6. Tung K.-K., Chan T. F., Kubota T. Large amplitude internal waves of permanent form. Studies Appl. Math. 1982, 66, 1—44.

7. Kao T. W., Pao K. H.-P. Wake collapse in the thermocline and internal solitary waves. J. Fluid Mech. 1980, 97, 115—127.

8. Stamp A. P., Jacka M. Deep-water internal solitary waves. J. Fluid Mech. 1995, 305, 347—371.

9. Derzho O. G., Grimshaw R. Asymmetric internal solitary waves with a trapped core in deep fluids. Phys. Fluids. 2007, 19, 096601.

10. Lamb K. G. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech. 2003, 478, 81—100. 43 Трансформация внутренних волн...

11. Gavrilov N. V., Liapidevskii V. Yu. Symmetric solitary waves at the interface between fluids. Doklady Physics. 2009, 54, 11, 508—511.

12. Gavrilov N. V., Liapidevskii V. Yu. Solitary waves of finite amplitude in a two-layer fluid. J. Appl. Mech. and Tech. Phys. 2010, 51, 4, 471—481.

13. Gavrilov N. V., Liapidevskii V., Gavrilova K. Large amplitude internal solitary waves over a shelf. Nat. Hazards Earth Syst. Sci. 2011, 11, 17—25.

14. Gavrilov N. V., Liapidevskii V., Gavrilova K. Mass and momentum transfer by solitary internal waves in a shelf zone. Nonlinear Processes Geoph. 2012, 19, 265—272.

15. Gavrilov N. V., Liapidevskii V. Yu., Liapidevskaya Z. A.The effect of dispersion on the propagation of internal waves in a shelf zone. Fundam. Prikl. Gidrofiz. 2013, 6, 2, 25—34 (in Russian).

16. Danilova K. N., Liapidevskii V. Yu. Solitary waves in two-layer shallow waters. Vestn. NSU. Ser. mat., mech., inf. 2014, 14, 4, 22—31 (in Russian).

17. Navrotskii V. V., Liapidevskii V. Yu., Pavlova E. P., Khrapchenkvo F. F. Internal waves and mixing in the shelf zone of the sea. Izvestiya TINRO. 2010, 162, 3, 324—337 (in Russian).

18. Navrotskii V. V., Liapidevskii V. Yu., Pavlova E. P. Internal waves and their biological effects in the shelf zone of the sea. Vestnik DVO RAN. 2012, 6, 22—31 (in Russian).

19. Kukarin V. F., Liapidevskii V. Yu., Navrotskii V. V., Khrapchenkov F. F. The evolution of internal waves of large amplitude in the shelf zone of the sea. Fundam. prikl. gidrofiz. 2013, 6, 2, 35—45 (in Russian).

20. Choi W. Modeling of strongly nonlinear internal gravity waves. Proceedings of the Fourth International Conference on Hydrodynamics. Eds.: Y. Goda, M. Ikehata, K. Suzuki. 2000. P. 453—458.

21. Barros R., Gavrilyuk S. Dispersive nonlinear waves in two-layer flows with free surface. Part II. Large Amplitude Solitary Waves Embedded into the Continuous Spectrum. Studies in Appl. Math. 2007, 119, 3, 213—251.

22. Le Metayer O., Gavrilyuk S., Hank S. A numerical scheme for the Green-Naghdi model. J. Comput. Phys. 2010, 229, 2034— 2045.

23. Liapidevskii V. Yu., Teshukov V. M. Mathematical models of long wave propagation in non-homogeneous fluid. Novosibirsk, SB RAS, 2000. 420 p.

24. Lien R.-Ch., Henyey F., Ma B., Yang Y. J. Large-amplitude internal solitary waves observed in the northern South China sea: properties and energetic. J. Phys. Oceanography. 2014, 44, 4, 1095—1115.

25. Serebryanyi A. N., Pao K. P. Passage of nonlinear internal wave through the point coup on shelf. DAN. 2008, 420, 4, 543—547 (in Russian).


Review

For citations:


Gavrilov N.V., Liapidevskii V.Yu., Liapidevskaya Z.A. Transformation of Large Amplitude Internal Waves Over a Shelf. Fundamental and Applied Hydrophysics. 2015;8(3):32-43. (In Russ.)

Views: 90


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)