Preview

Fundamental and Applied Hydrophysics

Advanced search

Transformation of Surface and Internal Waves Over the Bottom Step. Review

Abstract

A brief overview of works on transformation of surface and internal gravity waves over a bottom step is presented. The generalization of Lamb formulae for the transformation coefficients derived in the longwave approximation is discussed for waves of arbitrary length in the fluid of a finite length. The rigorous approach to calculate the transformation coefficients in the linear approximation is described both for the surface and internal waves in two-layer fluid. The problems associated with the application of the rigorous approach are noticed. The various approximate approaches are considered, as well as their compliance with the rigorous theory and numerical and experimental results. Within the framework of the rigorous approach the transformation coefficients of travelling waves and the excitation coefficients of evanescent modes are calculated. It is shown that wavelength of a quasi-monochromatic wavetrain changes after transformation on a bottom step proportionally to the phase speed, whereas the length of the envelope changes proportionally to the group speed. A comparison of theoretical results with numerical data and laboratory experiments is presented. 

About the Authors

A. A. Kurkin
Nizhny Novgorod State Technical University
Russian Federation


S. V. Semin
Nizhny Novgorod State Technical University
Russian Federation


Y. A. Stepanyants
Nizhny Novgorod State Technical University; University of Southern Queensland
Russian Federation


References

1. Lamb G. Hydrodynamics. Moscow, OGIZ, 1947. 330 p. (in Russian).

2. Grimshaw R., Pelinovsky E., Talipova T. Fission of a weakly nonlinear interfacial solitary wave at a step. Geophys. Astrophys. Fluid Dyn. 2008, 102, 179—194.

3. Pelinovsky E. N. About of the transformation of a solitary wave on the shelf with horizontal bottom. Theoretical and experimental research on the tsunami problem. Moscow, Nauka, 1977. P. 61—63. (in Russian).

4. Sretensky L. N. Theory of wave motions of fluid. Moscow, Nauka, 1977. 254 p. (in Russian).

5. Brekhovskikh L. M., Goncharov V. V. Introduction in the mechanics of continuum mediums. Moscow, Nauka, 1982. 335 p. (in Russian).

6. Bartolomeusz E. F. The reflection of long waves at a step. Proc. Cambridge Phil. Soc. 1958. P. 106—118.

7. Germain J. P. Coefficients de reflexion et de transmission en eau peu profonde. Rozprawy Hydrotechniczne. 1984, 46, 5—13.

8. Krylov Yu. M. Diffraction of waves in a liquid. Proceedings of the state Institute of Oceanography. 1949, 18, 13—18 (in Russian).

9. Takano K. Effets d’un obstacle parallelepipedique sur la propagation de la houle (The effect of a rectangular obstacle on wave propagation). La Houille Blanche. 1960, 15, 247—267.

10. Takano K. Effet d’un changement brusque de profondeur sur une houle irrotationelle. La mer. 1967, 5, 2, 100—116.

11. Newman J. N. Propagation of water waves over an infinite step. J. Fluid Mech. 1965, 23, 2, 339—415.

12. Massel S. R. Harmonic generation by waves propagating over a submerged step. Coastal Eng. 1983, 7, 357—380.

13. Massel S. R. Hydrodynamics of the coastal zone. Amsterdam, Elsivier, 1989. 95 p.

14. Rey V., Belzons M., Guazzellit E. Propagation of surface gravity waves over a rectangular submerged bar. J. Fluid Mech. 1992, 235, 453—479.

15. Kurkin A. A., Semin S. V., Stepanyants Yu. A. Transformation of Surface Waves over a Bottom Step. Izvestiya, Atmospheric and Oceanic Physics. 2015, 51, 2, 214—223.

16. Newman J. N. Propagation of water waves past long two-dimensional obstacles. J. Fluid Mech. 1965, 23, 1, 23—29.

17. Kreisel J. N. Surface waves. Quart. Appl. Math. 1949, 7, 21.

18. Mei C. C., Black J. L. Scattering of surface waves by rectangular obstacles in waters of finite depth. J. Fluid Mech. 1969, 38, 499—511.

19. Miles J. W. Surfaсe-wave scattering matrix for a shelf. J. Fluid Mech. 1967, 28, 4, 755—767.

20. Marshal J. S., Naghdi P. M. Wave reflection and Transmission by steps and rectangular obstacles in channels of finite depth. Theoret. Comput. Fluid Dynamics. 1990, 1, 287—301.

21. Green A. E., Naghdi P. M. Directed fluid sheets. Proc. Roy. Soc. London. Ser. 1976, 347, 447—473.

22. Green A. E., Naghdi P. M. Water waves in a nonhomogeneous incompressible fluid. J. Appl. Mech. 1977, 44, 523—528.

23. Green A. E., Naghdi P. M. A nonlinear theory of water waves for finite and infinite depths. Philos. Trans. Roy. Soc. London. Ser. 1986, 320, 37—70.

24. Green A. E., Naghdi P. M. Further developments in a nonlinear theory of water waves for finite and infinite depths. Philos. Trans. Roy. Soc. London. Ser. 1987, 324, 47—72.

25. Giniyatullin A. R., Kurkin A. A., Semin S. V., Stepanyants Y. A. Transformation of narrowband wavetrains of surface gravity waves passing over a bottom step. Math. Model. Natural Proc. 2014, 9, 5, 32—41.

26. Pelinovsky E. N. Hydrodynamics of tsunami waves. N. Novgorod, IAP RAS. 1996, 276 p. (in Russian).

27. Mirchina N. R., Pelinovski E. N. Nonlinear transformation of long waves at a bottom step. J. Korean Society of Coastal and Ocean Engineers. 1992, 4, 3, 161—167.

28. Djordjevic V. D., Redekopp L. G. The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr. 1978, 8, 1016—1024.

29. Pelinovsky E. N. et al. Solitary wave transformation on the underwater step: theory and numerical experiments. Applied Math Computations. 2010, 217, 4, 1704—1718.

30. Seabra-Santos F. J., Renouard D. P., Temperville A. M. Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 1987, 176, 117—134.

31. Losada M. A., Vidal C., Medina R. Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res. 1989, 94, 14557—14566.

32. Ablowitz M. J., Segur H. Solitons and the Inverse Scattering Transform. Philadelphia, SIAM, 1981.

33. Adcroft J. et al. MITgcm User Manual. MIT Department of EAPS. 2008. 464 p.

34. Marshall J. et al. A Fnite-volume, incompressible navier stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 1997, 102, 5753—5766.

35. Marshall J. et al. Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res. 1997, 102, 5733— 5752.

36. Stepanyants Yu. A. About of the propagation of solitons in an inhomogeneous long line. Radiotechnics and Electronics. 1977, 22, 5, 995—1002 (in Russian).

37. Nudner I. S. Wave deformation by a rectangular bench. Proceedings of the coordination meeting of hydraulic engineering. L., VNIIG. n.a. B.E. Vedeneyeva. 1973, 84, 75—80 (in Russian).

38. Churaev E. N., Semin S. V., Stepanyants Y. A. Transformation of internal waves passing over a bottom step. J. Fluid Mech. 2015, 368, R3-1—R3-11.

39. Semin S. V. Transformation of surface and internal waves over the bottom step. Thesis for the degree of candidate of physical and mathematical sciences. Nizhny Novgorod State Technical University n.a. R.E. Alekseev, N. Novgorod, 2015. 146 p. (in Russian)

40. Maderich V. et al. Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Phys. Fluids. 2010, 22, 076602.

41. Talipova T. et al. Internal solitary wave transformation over a bottom step: Loss of energy. Phys. Fluids. 2013, 25, 032110.

42. Apel J., Ostrovsky L. A., Stepanyants Y. A., Lynch J. F. Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 2007, 121, 2, 695—722.


Review

For citations:


Kurkin A.A., Semin S.V., Stepanyants Y.A. Transformation of Surface and Internal Waves Over the Bottom Step. Review. Fundamental and Applied Hydrophysics. 2015;8(3):3-19. (In Russ.)

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)