Preview

Fundamental and Applied Hydrophysics

Advanced search

Optimal Designing of Instruments for Determination of the Water Scattering Coefficient: the Theoretical Background

Abstract

A theoretical background for the methods of determination of the total scattering coefficient (b) by measurement of the light field of a wide-angle point source is given. The three versions of the instrument design, each of them including two sensors, are analyzed. The sensors of version 1 measure the total (direct and scattered) and nonscattered irradiances, while the sensors of version 2 measure the total and scattered irradiances, and those of version 3 measure the nonscattered and scattered irradiances. The optimal conceptual versions of the b-meter designing method for coastal and pure seawaters are suggested. It is shown how to find the parameters of light source and receiver to ensure the minimal errors of the b-measurement.

About the Authors

L. S. Dolin
Institute of Applied Physics
Russian Federation

N. Novgorod



I. M. Levin
Institute of Applied Physics
Russian Federation

N. Novgorod



References

1. Dolin L. S., Levin I. M. Underwater optics // The Optics Encyclopedia. V. 5: Weinheim / Eds. Th. G. Brown et al. Wiley-VCH Publ., 2004. P. 3237—3271.

2. Kopelevich O. V., Burenkov V. I. On the nephelometer method of scattering coefficient definition // Uzv. ÀN USSR. Physics of an atmosphere and ocean. 1971. V. 7, N 12. P. 1280—1289.

3. Zaneveld J. R. V., Kitchen J. C., Moore C. M. The scattering error correction of reflecting-tube absorption meters // Proc. SPIE. 1994. 2258. P. 44—55.

4. Zaneveld J. R. V., Kitchen J. C., Bricaud A., Moore C. C. Analysis of in-situ spectral absorption meter data // Proc.SPIE. 1992. 1750. P. 187—200.

5. Pegau W. S., Gray D., Zaneveld J. R. V. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity // Applied Optics. 1997. 36. P. 6035—6046.

6. Bogdan A., Boss E. S. Evaluation of a compact sensor for backscattering and absorption // Applied Optics. 2011. V. 50, N 21. P. 3758—3772.

7. Haubrich D., Musser J., Fry E. S. Instrumentation to measure the backscattering coefficient bb for arbitrary phase functions // Applied Optics. 2011. V. 50, N 21. P. 4134—4147.

8. Leymarie E., Doxaran D., Babin M. Uncertainties associated to measurements of inherent optical properties in natural waters // Applied Optics. 2010. V. 49, N 28. P. 5415—5436.

9. Dolin L. S., Levin I. M., Radomysl’skaya T. M. New instrument for measuring the scattering coefficient and the concentration of suspended particles in turbid water // SPIE Proceeding, Ocean Optics XII. V. 2258. P. 522—528.

10. Долин Л. С., Левин И. М. Справочник по теории подводного видения. Ленинград: Гидрометеоиздат, 1991. 230 с.

11. Levin I., Kopelevich O. Correlations between the Inherent Hydrooptical Characteristics in the spectral range close to 550 nm // Oceanology. 2007. V. 47, N 3. P. 344—348.

12. Копелевич О. В. Оптические свойства морской воды // Оптика океана. Москва: Наука, 1983. Т. 1. С. 150—234.


Review

For citations:


Dolin L.S., Levin I.M. Optimal Designing of Instruments for Determination of the Water Scattering Coefficient: the Theoretical Background. Fundamental and Applied Hydrophysics. 2016;9(1):83-92.

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)