Оптимальное конструирование приборов для измерения показателя рассеяния воды: теоретические основы
Аннотация
Излагаются теоретические основы метода определения полного показателя рассеяния воды (b), основанного на измерении характеристик поля излучения широкоугольного источника света. Анализируются три варианта прибора, каждый из которых включает в себя два фотоприемника. Приемники прибора типа 1 измеряют полную облученность (прямым и рассеянным светом) и облученность прямым светом, тогда как приемники прибора типа 2 измеряют полную облученность и облученность рассеянным светом, а приемники прибора типа 3 — облученности прямым и рассеянным светом. Предлагаются оптимальные принципиальные схемы измерителей показателя рассеяния для прибрежной и чистой морских вод. Указан способ нахождения параметров источника и приемников для минимизации погрешностей измерения b.
Об авторах
Л. С. ДолинРоссия
Н. Новгород
И. М. Левин
Россия
Н. Новгород
Список литературы
1. Dolin L. S., Levin I. M. Underwater optics // The Optics Encyclopedia. V. 5: Weinheim / Eds. Th. G. Brown et al. Wiley-VCH Publ., 2004. P. 3237—3271.
2. Kopelevich O. V., Burenkov V. I. On the nephelometer method of scattering coefficient definition // Uzv. ÀN USSR. Physics of an atmosphere and ocean. 1971. V. 7, N 12. P. 1280—1289.
3. Zaneveld J. R. V., Kitchen J. C., Moore C. M. The scattering error correction of reflecting-tube absorption meters // Proc. SPIE. 1994. 2258. P. 44—55.
4. Zaneveld J. R. V., Kitchen J. C., Bricaud A., Moore C. C. Analysis of in-situ spectral absorption meter data // Proc.SPIE. 1992. 1750. P. 187—200.
5. Pegau W. S., Gray D., Zaneveld J. R. V. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity // Applied Optics. 1997. 36. P. 6035—6046.
6. Bogdan A., Boss E. S. Evaluation of a compact sensor for backscattering and absorption // Applied Optics. 2011. V. 50, N 21. P. 3758—3772.
7. Haubrich D., Musser J., Fry E. S. Instrumentation to measure the backscattering coefficient bb for arbitrary phase functions // Applied Optics. 2011. V. 50, N 21. P. 4134—4147.
8. Leymarie E., Doxaran D., Babin M. Uncertainties associated to measurements of inherent optical properties in natural waters // Applied Optics. 2010. V. 49, N 28. P. 5415—5436.
9. Dolin L. S., Levin I. M., Radomysl’skaya T. M. New instrument for measuring the scattering coefficient and the concentration of suspended particles in turbid water // SPIE Proceeding, Ocean Optics XII. V. 2258. P. 522—528.
10. Долин Л. С., Левин И. М. Справочник по теории подводного видения. Ленинград: Гидрометеоиздат, 1991. 230 с.
11. Levin I., Kopelevich O. Correlations between the Inherent Hydrooptical Characteristics in the spectral range close to 550 nm // Oceanology. 2007. V. 47, N 3. P. 344—348.
12. Копелевич О. В. Оптические свойства морской воды // Оптика океана. Москва: Наука, 1983. Т. 1. С. 150—234.
Рецензия
Для цитирования:
Долин Л.С., Левин И.М. Оптимальное конструирование приборов для измерения показателя рассеяния воды: теоретические основы. Фундаментальная и прикладная гидрофизика. 2016;9(1):83-92.
For citation:
Dolin L.S., Levin I.M. Optimal Designing of Instruments for Determination of the Water Scattering Coefficient: the Theoretical Background. Fundamental and Applied Hydrophysics. 2016;9(1):83-92.