Preview

Fundamental and Applied Hydrophysics

Advanced search

Estimating the Effect of Ice on the Primary Production of Phytoplankton in the Barents Sea (Based on Three-Dimensional Modeling)

Abstract

This study is aimed to assess the impact of sea ice on the primary production of phytoplankton in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes a module of sea ice with 7 categories and the 11-component module of marine pelagic ecosystem developed in Saint-Petersburg Department of the P.P. Shirshov Institute of Oceanology of RAS. The comparison of the model results for the period 1998—2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll-a concentration and the primary production of phytoplankton in the Barents Sea. Model estimates of the annual primary production of phytoplankton for the whole sea turned out to be 1.5—2.3 times higher than similar estimates from satellite data. The main reason for this discrepancy is that the model takes into account the production of the primary production of phytoplankton under the pack ice and the marginal ice zone, and satellite data refer exclusively to the open water. Moreover, the evaluation of the primary production of phytoplankton from satellite data underestimates its importance due to subsurface maximum of chlorophyll. During the period 1998—2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15 %. This reduction was accompanied by an increase in the annual primary production of phytoplankton of the sea at 54 and 63 %, based, respectively, on satellite data and the model for the open water. According to the model calculations for the whole sea area, the increase is only 19 %. We conclude that an adequate assessment of the primary production in ice-covered seas can only be obtained on the basis of eco-hydrodynamic models, including sea ice.

About the Authors

V. A. Ryabchenko
Saint-Petersburg Department of the P. P. Shirshov Institute of Oceanology of RAS
Russian Federation

St.-Petersburg



V. A. Gorchakov
Saint-Petersburg Department of the P. P. Shirshov Institute of Oceanology of RAS
Russian Federation

St.-Petersburg



A. Yu. Dvornikov
Saint-Petersburg Department of the P. P. Shirshov Institute of Oceanology of RAS
Russian Federation

St.-Petersburg



S. S. Pugalova
Saint-Petersburg Department of the P. P. Shirshov Institute of Oceanology of RAS
Russian Federation

St.-Petersburg



References

1. Smedsrud L. H. et al. The role of the Barents Sea in the Arctic climate system // Reviews of Geophysics. 2013. V. 51, Iss. 3. P. 415—449. DOI: 10.1002/rog.20017.

2. Думанская И. О. Ледовые условия морей Европейской части России. М.; Обнинск: ИГ-СОЦИН, 2014. 608 с.

3. Биологический атлас морей Арктики 2000: планктон Баренцева и Карского морей. Мурманск: Мурман.мор.биол.ин-т; КРЦ РАН, 2000. 92 с. (CD_ROM).

4. Arctic System Science Primary Production (ARCSS-PP) database. URL: http://accession.nodc.noaa.gov/0063065 (дата обращения: 02.09.2015).

5. Arrigo K. R., Matrai P. A., Van Dijken G. L. Primary productivity in the Arctic Ocean: Impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates // J. Geophys. Res. Oceans. 2011. P. 116. doi: 10.1029/2011jc007273.

6. Engelsen O., Hegseth E. N., Hop H., Hansen E., Falk-Petersen S. Spatial variability of chlorophyll-a in the Marginal Ice Zone of the Barents Sea, with relation to sea ice and oceanographic conditions // J. Marine Systems. 2002. V. 35. P. 79—97.

7. Engelsen O., Hegseth E. N., Hop H., Hansen E., Falk-Petersen S. Deriving phytoplankton biomass in the Marginal Ice Zone from satellite observable parameters // Intern. J. Remote Sensing. 2004. V. 25, Iss. (7-8). P. 1453-7.

8. Reigstat M., Wassmann P., Riser C. W., Oygarden S., Rey F. Variations in hydrography, nutrients and chlorophyll-a in the marginal ice-zone and the central Barents Sea // J. Marine. Systems. 2002. V. 38, Iss. (1—2). P. 9—29.

9. Kushnir V., Pavlov V., Morozov A., Pavlova O. «Flashes» of Chlorophyll-a Concentration Derived from in Situ and Remote Sensing Data at the Polar Front in the Barents Sea // The Open Oceanography Journal. 2011. V. 5. P. 14—21.

10. Pabi S., Van Dijken G. L., Arrigo K. Primary production in the Arctic Ocean, 1998—2006 // J. Geophys. Res. 2008. V. 113. P. C08005. DOI:10.1029/2007JC004578.

11. Blumberg A. F., Mellor G. L. A description of a three-dimensional coastal ocean circulation model // Three-dimensional Coastal Ocean Models / Ed. by Heaps N. American Geophysical Union. Washington, D.C., 1987. 208 p.

12. Mellor G. L. Users guide for a three-dimensional, primitive equation numerical ocean model // Program in Atmospheric and Oceanic Sciences. Princeton University, Princeton; NJ, 2004. P. 56.

13. Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems // Reviews of Geophysics and Space Physics. 1982. V. 20. P. 851—875.

14. Smagorinsky J., Manade S., Holloway J. I. Numerical results from a nine level general circulation model of the atmosphere // Monthly Weather Review. 1965. V. 93. P. 727—768.

15. Sein D. V. et al. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation // J. Adv. Model. Earth Syst. 2015. V. 7. P. 268—304.

16. Haapala J., Lonnroth N., Stossel A. A numerical study of open water formation in sea ice // J. Geophys. Res. 2005. V. 110(C9). P. 1—17. DOI: 10.1029/2003JC002200.

17. Ryabchenko V., Dvornikov A., Haapala J., Myrberg K. Modelling ice conditions in the easternmost Gulf of Finland in the Baltic Sea // Continental Shelf Research. 2010. V. 30, N. 13. P. 1458—1471. DOI: 10.1016/j.csr.2010.05.006.

18. Ryabchenko V. A. et al. Seasonal dynamics and biological productivity in the Arabian Sea euphotic zone as simulated by a threedimensional ecosystem model // Global Biogeochemical Cycles. 1998. V. 12. P. 501—530.

19. Anderson T. R. et al. Denitrification in the Arabian Sea: A 3D ecosystem modeling study // Deep-Sea Res. I. 2007. V. 54. Iss. 12. P. 2082—2119.

20. The General Bathymetric Chart of the Oceans (GEBCO). URL: http://www.gebco.net/ (дата обращения: 02.09.2015).

21. Parkinson C. L., Washigton W. M. A large-scale numerical model of sea ice // J. Geophys. Res. 1979. V. 84(C1). P. 311—337.

22. The NCEP/NCAR Reanalysis Project at the NOAA/ESRL Physical Sciences Division. URL: http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml (дата обращения: 02.09.2015).

23. Orlanski I. A simple boundary condition for unbounded hyperbolic flows // J. Computational Physics. 1976. V. 21. P. 251—269.

24. Ocean Color Web. URL: http://oceancolor.gsfc.nasa.gov/cgi/l3 (дата обращения: 02.09.2015).

25. Smolarkiewicz P. K. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion // J. Computational Physics. 1984. V. 54. P. 325—362.

26. World Meteorological Organization sea-ice nomenclature, terminology, codes and illustrated glossary, WMO/DMM/BMO 259- TP-145. WMO. 1985. Secretariat of the World Meteorological Organization.

27. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. URL: http://nsidc.org/data/G02202 (дата обращения: 02.09.2015).

28. Ocean productivity. URL: http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.chl.seawifs.php (дата обращения: 02.09.2015).

29. Ocean productivity. URL: http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.eppley.s.chl.a.sst.php (дата обращения: 02.09.2015).

30. Qu B., Gabric A. J., Matrai P. Spatial and temporal distribution of chlorophyll-a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea // Polar Biology. 2006. V. 29. P. 196—210.

31. Popova E. E. et al. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model // Biogeosciences. 2010. V. 7. P. 3569—3591. DOI:10.5194/bg-7-3569-2010.

32. Strong C. Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February–April 1979—2010

33. // Clim.Dyn. 2012. V. 39. P. 3091—3102. DOI:10.1007/s00382-012-1356-6.


Review

For citations:


Ryabchenko V.A., Gorchakov V.A., Dvornikov A.Yu., Pugalova S.S. Estimating the Effect of Ice on the Primary Production of Phytoplankton in the Barents Sea (Based on Three-Dimensional Modeling). Fundamental and Applied Hydrophysics. 2016;9(1):41-51. (In Russ.)

Views: 90


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)