Tidal Changes in a Regional Marine System Climate: Two Means of Their Allowing for, as Applied to the Barents Sea in Summer
Abstract
Direct and indirect means of allowing for tidal effects in models of a regional marine system climate are discussed. The first of them is based on inserting a tidal constituent into external forcing. Whereas the second one is based on parameterizing internal tidal wave-induced dissipation of baroclinic tidal energy in terms of diapycnal diffusion. The results of two numerical experiments carried out in the frame of the three-dimensional finite-element hydrostatic model QUODDY-4, which includes or ignores tidal effects, are presented. A purpose of these numerical experiments is to determine how much important these effects are and where precisely they show up most clearly. A comparison of parameters (modulus and direction) of surface permanent currents, seawater temperature and salinity at the depth of pycnocline and mean dynamic topography of the free surface in the marine system considered, predicted in the above cases, is given. It is found that the tidal changes in the climatic characteristics are manifested most clearly in the Pechora Sea and the polar frontal zone. Overall the inclusion of tides does not favour any radical reorganization of the marine system climate, but its local changes can be pronounced. Also, we provide a comparison between differences of the above enumerated climatic characteristics obtained when the tidal effects are described directly and indirectly. It testified that the indirect means is acceptable.
About the Authors
B. A. KaganRussian Federation
Saint-Petersburg
E. V. Sofina
Russian Federation
Saint-Petersburg
References
1. Osborn T. R. Estimates of the local rate of vertical diffusion from dissipation measurements // J. Phys. Oceanogr. 1980. V. 10, № 1. P. 83—89.
2. Заславский Г. М., Сагдеев Р. З. Введение в нелинейную физику. М.: Наука, 1988, 368 с.
3. Jayne S. R., St. Laurent L. C. Parameterizing tidal dissipation over rough topography // Geophys. Res. Let. 2001. V. 28, № 5. P. 811—814.
4. Simmons H. L., Jayne S. R., St. Laurent L. C., Weaver A. J. Tidally driven mixing in a numerical model of the ocean general circulation // Ocean Model. 2004. V. 6, № 3—4. P. 245–263.
5. Saenko O. A. The effect of localized mixing on the ocean circulation and time-dependent climate change // J. Phys. Oceanogr. 2006. V. 36, № 2. P. 140—160.
6. Saenko O. A., Merryfield W. J. On the effect of topographically enhanced mixing on the global ocean circulation // J. Phys. Oceanogr. 2005. V. 35, № 5. P. 826—834.
7. Jayne S. R. The impact of abyssal mixing parameterizations in an ocean general model // J. Phys. Oceanogr. 2009. V. 39, № 7. P. 1756—1775.
8. Pacanowski R. C., Philander S.G.H. Parameterization of vertical mixing in numerical models of tropical oceans // J. Phys. Oceanogr. 1981. V. 11, № 11. P. 1443—1451.
9. Mueller M., Haak H., Jungclaus J. H., Suendermann J., Thomas M. The effect of ocean tides on a climate model simulation // Ocean Model. 2010. V. 35, № 4. P. 304—313.
10. Ip J.T.C., Lynch D. R. QUODDY-3 User's manual: Comprehensive coastal circulation simulation using finite elements: Nonlinear prognostic time-stepping model. Report Number NML 95–1, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 1995.
11. Kagan B. A., Sofina E. V. Surface and internal semidiurnal tides and tidally induced diapycnal diffusion in the Barents Sea: a numerical study // Cont. Shelf Res. 2014. V. 91. P. 158—170. doi:10.1016/j.csr.2014.09.010.
12. Padman L., Erofeeva S. A barotropic inverse tidal model for the Arctic Ocean // Geophys. Res. Let. 2004. V. 31. doi: 1029/2003 GL019003.
13. Новицкий В. П. Постоянные течения северной части Баренцева моря // Тр. ГОИН. 1967. Вып. 64. С. 1—32.
14. Rio M. H., Guinehut S., Larnicol G. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements // J. Geophys. Res. 2011. V. 116, № С07018. doi:10.1029/2010JC006505.
15. Joint US-Russian Atlas of the Arctic Ocean, Oceanography Atlas for the Summer Period / Eds. E. Tanis , L. Timokhov. Environmental Working Group, University of Colorado, Media Digital, 1998. (CD-ROM).
16. Kistler R. et al. The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation // Bull. Amer. Meteor. Soc. 2001. V. 82. P. 247—267.
17. International Bathymetric Chart of the Arctic Ocean / National Geophysical Data Center.–Boulder, Co. USA: NGDC, 2008. URL: http://www.ibcao.org/ (дата обращения: 20.08.2015).
18. Smagorinsky J. General circulation experiments with the primitive equations // Month. Weather Rev. 1963. V. 91. P. 99—164.
19. Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. Space Phys. 1982. V. 20, № 4. P. 854—875.
20. Loeng H., Sundby S. Drifting Argos buoys in the Barents Sea // Coun. Meet. Int. Coun. Explor. Sea, 1989. C:19. P. 1—10.
21. Гидрометеорология и гидрохимия морей СССР. Т. 1. Баренцево море. Вып. 1. / Под ред. Ф. С. Терзиева, Г. В. Гирдюка, Г. Г. Зыковой, С. Л. Дженюка. Л.: Гидрометеоиздат, 1990. 280 с.
22. Loeng H., Ozhigin V., Adlandsvik B. Water fluxes through the Barents Sea // ICES J. Mar. Sci. 1997. V. 54. P. 300—317.
Review
For citations:
Kagan B.A., Sofina E.V. Tidal Changes in a Regional Marine System Climate: Two Means of Their Allowing for, as Applied to the Barents Sea in Summer. Fundamental and Applied Hydrophysics. 2016;9(1):17-25. (In Russ.)