Seasonality of Submesoscale Coherent Vortices in the Northern Baltic Proper: A Model Study
https://doi.org/10.7868/S2073667321030114
Abstract
A very high-resolution modelling of the northern Baltic Proper shows that in summer the cyclonic and anticyclonic submesoscale coherent vortices (SCVs) with the extremum of vertical vorticity in the surface layer are formed, while the subsurface anticyclonic SCVs in the shape of convex lenses in the density field prevail over the cyclonic SCVs – concave lenses, with the vertical vorticity extremum in the cold intermediate layer below the seasonal thermocline and above the permanent halocline. In winter the seasonal thermocline and cold intermediate layer are replaced by a relatively deep convectively-mixed layer which makes the formation of subsurface concave cyclonic and convex anticyclonic lenses impossible there. Instead, the winter-time cyclonic SCVs with the vertical vorticity extremum at the surface dominate. The core of winter-time cyclonic SCVs is characterized by a negative temperature anomaly throughout the mixed layer. During its life cycle lasting up to several months and more, the modelled SCVs can repeatedly merge with other SCVs of the same sign of vorticity, and the merger makes the eddy stronger thereby contributing to its longevity.
Keywords
About the Authors
G. VäliEstonia
12618, Akadeemia tee, 15A, Tallinn
V. M. Zhurbas
Russian Federation
117997, Nahimovsky Pr., 36, Moscow
References
1. McWilliams J.C. Submesoscale, coherent vortices in the ocean. Rev. Geophys. 1985, 23, 165—182. doi: 10.1029/RG023i002p00165
2. McWilliams J.C. Vortex generation through balanced adjustment. J. Phys. Oceanogr. 1988, 18, 1178—1192. doi: 10.1175/1520-0485(1988)018<1178:VGTBA>2.0.CO;2
3. Armi L., Hebert D., Oakey N., Price J. F., Richardson P. L., Rossby H. T., Rudduck B. Two years in the life of a Mediterraneam salt lens. J. Phys. Oceanogr. 1989, 19, 354—370. doi: 10.1175/1520-0485(1989)019<0354:TYITLO>2.0.CO;2
4. Benilov A.Yu., Safray A.S., Filyushkin B.N., Kojelupova N.G. On nonlinear dynamics of Meddies. Fundam. Prikl. Gidrofiz. 2020, 13, 3, 20—42 (in Russian). doi: 10.7868/S2073667320030028
5. McWilliams J.C. Submesoscale currents in the ocean. Proc. R. Soc. A. 2016, 72, 20160117. doi: 10.1098/rspa.2016.0117
6. Zhurbas V.M., Kuzmina N.P. On the spreading of a mixed patch in a rotating stably stratified fluid. Izv. Acad. Sci. SSSR, Atmos. and Oceanic Phys. 1981, 17(3), 211–217.
7. D’Asaro E. Generation of submesoscale vortices: a new mechanism. J. Geophys. Res. 1988, 93, 6685—6693. doi: 10.1029/JC093iC06p06685
8. Gula J., Molemaker M.J., McWilliams J.C. Gulf Stream dynamics along the southeastern U. S. Seaboard. J. Phys. Oceanogr. 2015, 45, 690—715. doi: 10.1175/JPO-D-14-0154.1
9. Elken J., Pajuste M., Kõuts T. On intrusive lenses and their role in mixing in the Baltic deep layers. Proceedings of the Conference of the Baltic Oceanographers, Kiel. 1988, 1, 367—376.
10. Zhurbas V.M., Paka V.T. Mesoscale thermohaline variability in the Eastern Gotland Basin following the 1993 major Baltic inflow. J. Geophys. Res. 1997, 102(C9), 20917—20926. doi: 10.1029/97JC00443
11. Sellschopp J., Arneborg L., Knoll M., Fiekas V., Gerdes F., Burchard H., Lass H.U., Mohrholz V., Umlauf L. Direct observations of medium-intensity inflow into the Baltic Sea. Cont. Shelf Res. 2006, 26, 2393—2414. doi: 10.1016/j.csr.2006.07.004
12. Piechura J., Beszczyńska-Möller A. Inflow waters in the deep regions of the Southern Baltic Sea – transport and transformations. Oceanologia. 2003, 45(4), 593—621.
13. Zhurbas V., Stipa T., Mälkki P., Paka V., Golenko N., Hense I., Sklyarov V. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: observations and numerical experiments. J. Geophys. Res. Oceans. 2004, 109, C05033. doi: 10.1029/2003JC002074
14. Zhurbas V.M., Oh I.S., Paka V.T. Generation of cyclonic eddies in the Eastern Gotland Basin of the Baltic Sea following dense water inflows: Numerical experiments. J. Mar. Sys. 2003, 38, 323—336. doi: 10.1016/S0924-7963(02)00251-8
15. Zhurbas V., Elken J., Paka V., Piechura J., Väli G., Chubarenko I., Golenko N., Shchuka S. Structure of unsteady overflow in the Słupsk Furrow of the Baltic Sea. J. Geophys. Res. Oceans. 2012, 117, C04027. doi: 10.1029/2011JC007284
16. Spall M.A., Price J.F. Mesoscale variability in the Denmark Strait: the PV outflow hypothesis. J. Phys. Oceanogr. 1998, 28, 1598—1623. doi: 10.1175/1520-0485(1998)028<1598:MVIDST>2.0.CO;2
17. Karimova S.S., Lavrova O.Yu., Solov’ev D.M. Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data. Izv. Atm. Ocean. Phys. 2012, 48(9), 1006—1013. doi: 10.1134/S0001433812090071
18. Laanemets J., Väli G., Zhurbas V., Elken J., Lips I., Lips U. Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006. Boreal Environ. Res. 2011, 16(A), 15—26.
19. Väli G., Zhurbas V., Lips U., Laanemets J. Submesoscale structures related to upwelling events in the Gulf of Finland, Baltic Sea (numerical experiments). J. Mar. Syst. 2017, 171(SI), 31—42. doi: 10.1016/j.jmarsys.2016.06.010
20. Väli G., Zhurbas V., Lips U., Laanemets J. Clustering of floating particles due to submesoscale dynamics: a simulation study for the Gulf of Finland, Baltic Sea. Fudam. Prikl. Gidrofiz. 2018, 11 (2), 21—35. doi: 10.7868/S2073667318020028
21. Zhurbas V., Väli G., Kuzmina N. Rotation of floating particles in submesoscale cyclonic and anticyclonic eddies: a model study for the southeastern Baltic Sea. Ocean Sci. 2019, 15, 1691—1705. doi: 10.5194/os-15-1691-2019
22. Reißmann J.H. An algorithm to detect isolated anomalies in three-dimensional stratified data fields with an application to density fields from four deep basins of the Baltic Sea. J. Geophys. Res. 2005, 110, C12018. doi: 10.1029/2005JC002885
23. Vortmeyer-Kley R., Holtermann P.L., Feudel U., Gräwe U. Comparing Eulerian and Lagrangian eddy census for a tide-less, semi-enclosed basin, the Baltic Sea. Ocean Dyn. 2019, 69, 701—717. doi: 10.1007/s10236-019-01269-z
24. Burchard H., Bolding K. GETM – a general estuarine transport model, Scientific documentation, Technical report EUR20253 en. Tech. rep., European Commission. Ispra, Italy, 2002.
25. Hofmeister R., Burchard H., Beckers J-M. Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model. 2010, 33(1—2), 70—86. doi: 10.1016/j.ocemod.2009.12.003
26. Gräwe U., Holtermann P., Klingbeil K., Burchard H. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 2015, 92, 56—68, doi: 10.1016/j.ocemod.2015.05.008
27. Burchard H., Bolding K. Comparative Analysis of Four Second-Moment Turbulence Closure Models for the Oceanic Mixed Layer. J. Phys. Oceanogr. 2001, 31, 1943—1968. doi: 10.1175/1520-0485(2001)031<1943:CAOFSM>2.0.CO;2
28. Canuto V.M., Howard A., Cheng Y., Dubovikov M.S. Ocean Turbulence. Part I: One-Point Closure Model – Momentum and Heat Vertical Diffusivities. J. Phys. Oceanogr. 2001, 31, 1413—1426. doi: 10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2
29. Zhurbas V., Väli G., Golenko M., Paka V. Variability of bottom friction velocity along the inflow water pathway in the Baltic Sea. J. Mar. Syst. 2018, 184, 50—58. doi: 10.1016/j.jmarsys.2018.04.008
30. Liblik T., Väli G., Lips I., Lilover M.-J., Kikas V., Laanemets J. The winter stratification phenomenon and its consequences in the Gulf of Finland, Baltic Sea. Ocean Sci. 2020, 16, 1475—1490. doi: 10.5194/os-16-1475-2020
31. Männik A., Merilain M. Verification of different precipitation forecasts during extended winter-season in Estonia. HIRLAM Newsletter. 2007, 52, 65—70.
32. Killworth P.D. Deep convection in the World Ocean. Rev. Geophys. 1983, 21, 1—26. doi: 10.1029/RG021i001p00001
Review
For citations:
Väli G., Zhurbas V.M. Seasonality of Submesoscale Coherent Vortices in the Northern Baltic Proper: A Model Study. Fundamental and Applied Hydrophysics. 2021;14(3):122-129. https://doi.org/10.7868/S2073667321030114