Analysis of Hydro-Biological and Hydro-Optical Characteristics in Submesoscale Eddies in the Gulf of Peter the Great with the Use of Simultaneous in-situ and Remote Measurements
https://doi.org/10.7868/S2073667321030102
Abstract
The article analyzes the submesoscale eddies detected in the southern part of Peter the Great Bay in September 2009 as a process influencing the stratification of optically active components in the upper sea layer and the values of the sea brightness coefficients. To analyze the motion of vortices, satellite data of the 2nd level of the average spatial resolution of the MODIS-Terra/Aqua, Merris-ENVISAT-1 spectroradiomers in the fields of sea surface temperature, chlorophyll-a concentration and synthesized RGB images, ship STD data from the SBE19 plus profiler and remote measurements of the spectra of sea brightness coefficients from the handheld hyperspectral radiometer ASD FieldSpec, obtained in a series of coastal expeditions of the POI FEB RAS in September 2009.
As a result, it was found that the eddies are characterized by lower salinity and increased content of colored dissolved organic matter, which may be associated with the influence of the Tumannaya River runoff. The greatest contrast of the vortex relative to adjacent waters is achieved at a wavelength of 412 nm according to remote sensing data. In addition, the contrast is noticeable in remote measurements of chlorophyll-a concentration. The depth of the vortex was 5—7 meters and is completely within the observation area from the satellite in the visible spectral range.
About the Authors
N. A. LipinskaiaRussian Federation
690041, Baltiyskaya Str., 43, Vladivostok
P. A. Salyuk
Russian Federation
690041, Baltiyskaya Str., 43, Vladivostok
References
1. Garcia, Carlos & Y.V.B., Sarma & Mata, Mauricio & Garcia, Virginia. Chlorophyll variability and eddies in the Brazil-Malvinas Confluence region. Deep Sea Research Part II: Topical Studies in Oceanography. 2004, 51, 159—172. doi: 10.1016/j.dsr2.2003.07.016
2. Ginzburg, Anna & Kostianoy, Andrey & Nezlin, Nikolay & Soloviev, Dmitry & Stanichny, Sergey. Anticyclonic eddies in the northwestern Black Sea. Journal of Marine Systems. 2002, 32, 91—106. doi: 10.1016/S0924-7963(02)00035-0
3. Samolyubov B.I., Ivanova I.N. Dynamics of waters and diffusion of impurities in Lake Onega with different stability of density stratification. Moscow University Physics Bulletin. 2019, 1, 80—85 (in Russian).
4. Aleksanin A.I., Zagumennov A.A. Automatic detection of ocean vortices and calculation of their shape. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2008, 5, 2, 17—21 (in Russian).
5. Karimova S.S. Statistical analysis of sub-mesoscale eddies of the Baltic, Black and Caspian seas according to satellite radar data. Issledovanie Zemli iz kosmosa. 2012, 3, 31—47 (in Russian).
6. Gurvich I.A., Pichugin M.K. Investigation of the characteristics of intense mesoscale cyclones over the Far Eastern seas based on satellite multisensor sensing. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2013, 10, 1, 051—059 (in Russian).
7. Mitnik L.M., Bulatov N.V., Lobanov V.B. Synoptic eddies in the ocean on satellite radar images. Doklady Akademii Nauk USSR. 1989, 307, 2, 454—456 (in Russian).
8. Aleksanin A.I., Kim V. Automatic detection of internal waves in satellite images and estimation of the density of the mixed layer. Issledovanie Zemli iz Kosmosa. 2015, 1, 44 (in Russian).
9. Aleksanin A.I., Aleksanina M.G. Automatic vortex detection by satellite infrared (IR) images. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2004, 1, 1, 382—386 (in Russian).
10. Aleksanin A.I., Zagumennov A.A. Automatic detection of ocean vortices and calculation of their shape. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2008, 5, 2, 17—21 (in Russian).
11. Kubryakov A.A., Belonenko T.V., Stanichny S.V. Influence of synoptic eddies on the sea surface temperature in the northern part of the Pacific Ocean. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2016, 13, 2, 34—43 (in Russian). doi: 10.21046/2070-7401-2016-13-2-34-43
12. Karimova S.S., Lavrova O.Yu., Soloviev D.M. Observation of vortex structures in the Baltic Sea using radar and radiometric satellite data. Issledovanie Zemli iz Kosmosa. 2011, 5, 15—23 (in Russian).
13. Zhabin I.A., Lukyanova N.B. Submesoscale vortex paths in the region of the Shantar Islands (Sea of Okhotsk) according to satellite remote sensing data. Issledovanie Zemli iz Kosmosa. 2020, 3, 38—44 (in Russian). doi: 10.31857/S0205961420020074
14. Muzylyova M.A., Polonskiy A.B., Stanichny S.V. Upwelling and spatiotemporal variability of chlorophyll-a concentration in the northwestern part of the Black Sea and off the coast of Crimea. Ecological Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources. 2010, 23, 109—116 (in Russian).
15. Aleskerova A.A., Kubryakov A.A., Goryachkin Yu.N., Stanichny S.V., Garmashov A.V. Distribution of suspended matter near the western coast of Crimea under the influence of strong winds of various directions. Issledovanie Zemli iz Kosmosa. 2019, 2, 74—88 (in Russian). doi: 10.31857/S0205-96142019274-88
16. Aleksanin A.I., Zagumennov A.A. Automatic detection of ocean vortices and calculation of their shape. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2008, 5, 2, 17—21 (in Russian).
17. Lipinskaya N.A., Salyuk P.A. Investigation of the effect of internal waves on the optical characteristics of the sea surface in the shelf zone of the Peter the Great Bay. Fundamentalnaya i Prikladnaya Gidrofizika. 2020, 13, 2, 51—59 (in Russian). doi: 10.7868/ S2073667320020069
18. Zhurbas V.M., Zatsepin A.G., Grigorieva Yu.V. et al. Water circulation and characteristics of different-scale currents in the upper layer of the Black Sea according to drifter data. Oceanology. 2004, 44, 1, 30—43.
19. Kim, Dongseon & Yang, Eun-Jin & Kim, Kyoungkon & Shin, Chang-Woong & Park, Jisoo & Yoo, Sinjae & Hyun, Jung-Ho & Kim, Dolee & Kim, E. Impact of an anticyclonic eddy on the summer nutrient and chlorophyll a distributions in the Ulleung Basin, East Sea (Japan Sea). ICES Journal of Marine Science. 2011, 69, 23—29.
20. Sutorikhin I.A., Bukaty V.I., Kotovshchikov A.V., Akulova O.B. Investigation of spectral transparency and chlorophyll concentration in a floodplain lake (Upper Ob basin, Altai Territory). Izvestiya AltGU. 2012, 1, 226—228 (in Russian).
21. Kouketsu S., Kaneko H., Okunishi T., Sasaoka K., Itoh S., Inoue R., Ueno H. Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. Journal of Oceanography. 2015, 72, 439—451.
22. Thomas L.N., Tandon A., Mahadevan A. Submesoscale processes and dynamics, in Eddy Resolving Ocean Modeling. Geophysical Monograph Ser. 2008, 177, edited by M. W. Hecht and H. Hasumi. P. 17—38.
23. Monin A.S. On the types of oceanic mesostructures. Oceanology. 1995, 344, 6, 819—822.
24. Niewiadomska Katarzyna, Claustre HervÉ, Prieur Louis, d’Ortenzio Fabrizio. Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider. Limnology and Oceanography. 2008, 53, 2210—2225.
25. Lavrova O.Yu., Mityagina M.I., Sabinin K.D., Serebryany A.N. Study of hydrodynamic processes in the shelf zone on the basis of satellite information and data from sub-satellite measurements. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2015, 12, 5, 98—129 (in Russian).
26. Karabashev G.S., Evdoshenko M.A., Sheberstov S.V. Analysis of manifestations of mesoscale water exchange on satellite images of the sea surface. Oceanology. 2005, 45, 2, 168—178.
27. Aleksanin A.I., Zagumyonnov A.A. Problems of automatic detection of ocean eddies from satellite infrared images. Issledovanie Zemli iz Kosmosa. 2011, 3, 65—74 (in Russian).
28. O’Reilly J.E., Werdell P.J. Chlorophyll algorithms for ocean color sensors – OC4, OC5 and OC6. Remote Sensing of Environment. 2019, 229, 32—47. doi: 10.1016/j.rse.2019.04.021
29. Korchemkina E.N., Molkov A.A. Regional bio-optical algorithm for the Gorky reservoir: first results. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2018, 15, 3, 184—192 (in Russian). doi: 10.21046/2070-7401-2018-15-3-184-192
30. Salyuk P.A., Stepochkin I.E., Golik I.A., Bukin O.A., Pavlov A.N., Aleksanin A.I. Development of empirical algorithms for restoring the concentration of chlorophyll-a and colored dissolved organic substances for the Far Eastern seas from remote sensing data on the color of the water surface. Issledovanie Zemli iz Kosmosa. 2013, 3, 45 (in Russian).
31. Lavrova O.Yu., Kostyanoy A.G. The use of modern satellite data for the monitoring of surge phenomena. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2020, 17, 2, 227—242 (in Russian). doi: 10.21046/2070-7401-2020-17-2-227-242
32. Kostyanoy A.G. Satellite monitoring of climatic parameters of the ocean. Part 2. Fundamentalnaya i Prikladnaya Climatologiya. 2017, 3, 57—64 (in Russian). doi: 10.21513/2410-8758-2017-3-57-64
33. Kopelevich O.V., Vazyulya S.V., Sheberstov S.V., Bukanova T.V. Suspended matter in the surface layer of the southeastern Baltic from satellite data. Oceanology. 2016, 56, 1, 46—54. doi: 10.1134/S0001437016010069
34. Dobrovolsky A.D., Zalogin B.S. Sea of Japan. Morya USSR. Izdatelstvo Mosk. Un-ta, 1982 (in Russian).
35. Dubina V.A., Fayman P.A., Ponomarev V.I. Eddy structure of currents in the Peter the Great Bay. Izv. TINRO. 2013, 173, 247—258 (in Russian).
36. Nikitin A.A., Dyakov B.S. The structure of fronts and eddies in the western part of the Sea of Japan. Izv. TINRO. 1998, 124, 714—733 (in Russian).
37. Isoda Y., Saitoh S. The northward intruding eddy along the east coast of Korea. Journal of Oceanography. 1993, 49, 443—458.
38. Vyshkvartsev D.I. Transboundary flow of pollution with the waters of the Tumannaya River. Vestnik Dal’nevostochnogo Otdeleniya Rossijskoj Akademii Nauk. 1997, 2, 88 (in Russian).
39. Navigation of the north-western coast of the Sea of Japan from the Tumannaya River to Cape Belkin (No. 1401). SPb., GUNIO, 1996. 354 p. (in Russian).
40. Tkalin A.V., Shapovalov E.N. Influence of Typhoon Judy on chemistry and pollution of the Japan Sea coastal water near the Tumangan river mouth. Ocean Research. 1991, 13, 12, 95—101.
41. Major A.YU., Bukin I.O., Salyuk P.A. Lazernyj fluorimetr dlya issledovaniya podvodnoj sredy. Patent na poleznuyu model’ RU157814 U1, 10.12.2015. Zayavka № 2015100479/28 ot 12.01.2015. (in Russian).
42. Temerdashev Z.A., Pavlenko L.F., Ermakova Y.S., Korpakova I.G., Yeletskiy B.D. Extraction-fluorimetric determination of chlorophyll «a» in natural waters. Analitika i Kontrol. 2019, 23, 3, 323—333 (in Russian).
43. Mueller J., More A., Frouin R. et al. Ocean optics protocols for satellite ocean color sensor validation. Radiometric Measurements and Data Analysis Protocols. 2003, rev. 4, 3, 78.
44. Zakharkov S.P., Streikhert EA., Shambarova Yu.V., Gordeychuk T.N., Shi S. Measuring chlorophyll-a concentrations in the Sea of Japan using probe and flow fluorimeters. Oceanology. 2016, 56, 3, 444—451. doi: 10.1134/S000143701602020X
45. Kopelevich O.V., Burenkov V.I., Sheberstov S.V. Development and use of regional algorithms for calculating the bio-optical characteristics of the seas of Russia according to satellite color scanners. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2006, 2, 3, 99—105 (in Russian).
Review
For citations:
Lipinskaia N.A., Salyuk P.A. Analysis of Hydro-Biological and Hydro-Optical Characteristics in Submesoscale Eddies in the Gulf of Peter the Great with the Use of Simultaneous in-situ and Remote Measurements. Fundamental and Applied Hydrophysics. 2021;14(3):111-121. (In Russ.) https://doi.org/10.7868/S2073667321030102