Method of Internal Waves Registration by Lidar Sounding in Case of Waters with Two-Layer Sratification of Hydrooptical Characteristics
https://doi.org/10.7868/S2073667321030084
Abstract
A method for processing a shipborne radiometric polarization lidar signals has been developed. The method allows to perform reliable and fairly accurate determination the position of the boundary between layers with different hydrooptical characteristics. The method is based on the analysis of the time dependence of the echo signal decay. This makes it possible to register changes of the boundary position in the absence of a high scattering layer. Model calculations of lidar echo signals for two-layer stratification of hydrooptical characteristics has showed sharp changes in the time dependence of the echo signal decay in the region of the boundary between the layers, which is especially pronounced for the cross-polarized component of the echo signal. A long-term cycle of lidar sounding of the seawater was performed. The accompanying measurements of the hydrophysical characteristics and the light attenuation coefficient by the Seabird SBE25 with a transmissometer in the experimental area showed the presence of a boundary between the layers at depths of 15—17 m, confined to the pycnocline depth. Processing and analysis of the resulting array of lidar sounding data made it possible to record periodic changes in the position of the boundary between the layers. The maximum recorded amplitude is 3 m, and the average oscillation time period is 8.5 min. The obtained values are typical for internal waves observed in the shelf zone of the Black Sea.
About the Authors
V. A. GlukhovRussian Federation
117997, Nahimovsky Pr., 36, Moscow
Yu. A. Goldin
Russian Federation
117997, Nahimovsky Pr., 36, Moscow
M. A. Rodionov
Russian Federation
117997, Nahimovsky Pr., 36, Moscow
References
1. Vasilkov A.P., Goldin Yu.A., Gureev B.A., Hoge F.E., Swift R.N., Wright C.W. Airborne polarized lidar detection of scattering layers in the ocean. Appl. Opt. 2001, 40, 4353—4364. doi: 10.1364/AO.40.004353
2. Goldin Y.A., Vasilev A.N., Lisovskiy A.S., Chernook V.I. Results of Barents Sea airborne lidar survey. Proc. SPIE. 2007, 6615, 66150E (Apr.13, 2007).
3. Brian L. Collister, Richard C. Zimmerman, Victoria J. Hill, Charles I. Sukenik, William M. Balch. Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom. Appl. Opt. 2020, 59, 4650—4662. doi: 10.1364/AO.389845
4. Peituo Xu et al. Design and validation of a shipborne multiple-field-of-view lidar for upper ocean remote sensing. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107201. doi: 10.1016/j.jqsrt.2020.107201
5. Glukhov V.A., Goldin Yu.A., Rodionov M.A. Experimental estimation of the capabilities of the lidar PLD-1 for the registration of various hydro-optical irregularities of the sea water column. Fundam. Prikl. Gidrofiz. 2017, 10, 2, 41—48 (in Russian). doi: 10.7868/S207366731702006X
6. Roddewig M.R., Pust N.J., Churnside J.H., Shaw J.A. Dual polarization airborne lidar for freshwater fisheries management and research. Opt. Eng. 2017, 56, 3, 031221. doi: 10.1117/1.OE.56.3.031221
7. Churnside J.H., David A. Demer, Behzad Mahmoudi. A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico. ICES J. Mar. Sci. 2003, 60(1), 147—154. doi: 10.1006/jmsc.2002.1327
8. Churnside J.H. et al. Airborne remote sensing of a biological hot spot in the southeastern Bering Sea. Remote Sens. 2011, 3, 3, 621—637. doi: 10.3390/rs3030621
9. Churnside J.H., Marchbanks R.D. Subsurface plankton layers in the Arctic Ocean. Geophys. Res. Lett. 2015, 42, 4896— 4902. doi: 10.1002/2015GL064503
10. Goldin Yu., Gureev B., Ventskut Yu. Shipboard polarized lidar for seawater column sounding. Proc. SPIE Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters. 2007, 6615, 66150H (13 April 2007). doi: 10.1117/12.740466
11. Hoge F., Wright C., Krabill W., Buntzen R., Gilbert G., Swift R., Yungel J., Berry R. Airborne lidar detection of subsurface oceanic scattering layers. Appl. Opt. 1988, 27, 3969—3977. doi: 10.1364/AO.27.003969
12. Churnside J.H., Donaghay P.L. Thin scattering layers observed by airborne lidar. ICES J. Mar. Sci. 2009, 66, 778—789. doi: 10.1093/icesjms/fsp029
13. Rodionov M.A., Dolina I.S., Levin I.M. Correlations between depth distributions of water attenuation coefficient and density in the North Seas. Fundam. Prikl. Gidrofiz. 2012, 5, 4, 39—46. (in Russian).
14. Zhegulin G.V. Estimation of the statistical communication of hydrological and hydrooptical characteristics from the data of measurement of short-period inland waves in the deep-border region of the Barents Sea. Fundam. Prikl. Gidrofiz. 2019, 12, 1, 85—94 (in Russian). doi: 10.7868/S2073667319010106
15. Walker R.E., Fraser A.B., Mastracci L., Hochheimer B.F. Optical sounding for internal waves on the ocean thermocline. Oceans 82 Conference Record (Washington, DC : American Geophysical Union). 1982, 20—22 September, 247—250.
16. Bravo-Zhivotovskii D.M., Dolin L.S., Savel’ev V.A., Fadeev V.V., Shegol’kov Y.B. Optical methods for ocean diagnostics. Laser Remote Sensing. Remote Methods for Ocean Studies. 1987, 84—125 (in Russian).
17. Churnside J.H., Ostrovsky L.A. Lidar observation of a strongly nonlinear internal wave in the Gulf of Alaska. Int. J. Remote Sens. 2005, 26, 1, 167—177. doi: 10.1080/01431160410001735076
18. Dolin L.S., Dolina I.S., Savel’ev V.A. A lidar method for determining internal wave characteristics. Izv. Atmos. Ocean. Phys. 2012, 48, 4, 444—453. doi: 10.1134/S0001433812040068
19. Dolina I.S., Dolin L.S. Simulation of lidar images of nonlinear internal waves in the shallow sea. Fundam. Prikl. Gidrofiz. 2017, 10, 1, 31—36 (in Russian). doi: 10.7868/S207366731701004X
20. Khimchenko E.E., Serebryany A.N. Internal waves on the Caucasian and Crimean shelves of the Black Sea (according to summer-autumn observations 2011—2016). J. Oceanological Res. 2018, 46, 2. (in Russian). doi: 10.29006/1564-2291.JOR-2018.46(2).7
21. Serebryany A.N., Ivanov V.A. Study of internal waves in the Black Sea from oceanography platform of Marine Hydrophysical Institute. Fundam. Prikl. Gidrofiz. 2013, 3, 34—45 (in Russian).
22. Zimin A.V., Svergun E.I. Analysis of the characteristics and assessment of the expected heights of internal waves on the Crimean shelf according to the expedition data in the summer of 2016. Proceedings of the Russian Scientific and Practical Conference «IV Feodosia Scientific Readings» St. Petersburg, September 11—12, 2017, 230—234 (in Russian).
23. Lavrova O.Y., Serebryany A.N., Mityagina M.I., Bocharova T.Y. Subsatellite observations of small-scale hydrodynamic processes in the northeastern Black Sea. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2013, 10, 14, 308—322 (in Russian).
24. Ivanov V.A., Shul’ga T.Ya., Bagaev A.V., Medvedeva A.V., Plastun T.V., Verzhevskaya L.V., Svishcheva I.A. Internal waves on the Black Sea shelf near the Heracles Peninsula: modeling and observation. Physical Oceanography. 2019, 26, 4, 288—303. doi: 10.22449/1573-160X-2019-4-288-303
25. Goldin Yu.A., Rodionov M.A., Gureev B.A., Glukhov V.A. Marine polarization lidar PLD-1. Proceedings of the XIII Russian conference «Applied technologies of hydroacoustics and hydrophysics». St. Petersburg, 2016, 215—217 (in Russian).
26. Glukhov V.A., Gol’din Yu.A., Gureev B.A., Rodionov M.A. Location of submerged objects in low-transparency waters using PLD-1 lidar. Proceedings of the IX Russian conference with international participation «Modern problems of optics of natural waters (ONW’2017)», St. Petersburg, 20—22 September 2017, 127—131 (in Russian).
27. Lewis G.D., Jordan D.L., Roberts P.J. Backscattering target detection in a turbid medium by polarization discrimination. Appl. Opt. 1999, 38, 18, 3937—3944. doi: 10.1364/AO.38.003937
28. Goldin Yu.A., Rogozkin D.B., Sheberstov S.V. Polarized lidar sounding of stratified seawater. Proceedings of IV International Conference «Current Problems in Optics of Natural Waters (ONW’2007)». Nizhny Novgorod, 2007, 175—178.
29. Levin I.M., Kopelevich O.V. Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm. Oceanology. 2007, 47, 344—349. doi: 10.1134/S000143700703006X
Review
For citations:
Glukhov V.A., Goldin Yu.A., Rodionov M.A. Method of Internal Waves Registration by Lidar Sounding in Case of Waters with Two-Layer Sratification of Hydrooptical Characteristics. Fundamental and Applied Hydrophysics. 2021;14(3):86-97. (In Russ.) https://doi.org/10.7868/S2073667321030084