Modeling the tidal dynamics of the northern straits of the Kuril Ridge
https://doi.org/10.7868/S2073667321030023
Abstract
A boundary value problem is solved for the equations of motion, continuity, density constituents and turbulence characteristics in the 3D-domain of the northern Kuril Straits with boundary conditions determined by the solution of the global model. The boundary value problem is implemented by the finite volume method on an unstructured mesh in the hydrostatic approximation. Detailed tidal modelling of the Fourth Strait dynamics is performed in a non-hydrostatic approach. The results represent the velocity fields, residual circulation of the М2 tidal wave and the summary tide of eight harmonics M2, S2, N2, K2, K1, О1, P1, Q1 with a synodic period of 29.5 days. A comparison of the behaviour of the vertical velocity in the tidal cycle of the М2 wave for two subregions of the Fourth Strait when solving the boundary value problem in the Hs and the Nh approximation was performed. The Hoffmüller diagram of the dynamic characteristics in the synodic month is presented. It has been shown that taking into account the Nh approach, there is a significant change in the transfer of water masses through the Fourth Strait of the Kuril Ridge.
About the Authors
A. A. RodionovRussian Federation
117997, Nahimovsky Pr., 36, Moscow
199034, Universitetskaya Nab., 5, St. Petersburg
A. A. Androsov
Russian Federation
117997, Nahimovsky Pr., 36, Moscow
Am Handelshafen 12, 27570 Bremerhaven
V. V. Fofonova
Germany
Am Handelshafen 12, 27570 Bremerhaven
I. S. Kuznetsov
Germany
Am Handelshafen 12, 27570 Bremerhaven
N. E. Voltzinger
Russian Federation
117997, Nahimovsky Pr., 36, Moscow
References
1. Bogdanov K.T., Moroz V.V. Structure, dynamic and hydrology-acoustical water characteristics peculiarities of the Kuril Straits area. Dalnayka, 2000. 152 p.
2. Nakamura T., Awaji T., Hatayama T., Kazunori A. Tidal exchange through Kuril Straits. J. Phys. Ocean. 2000, 30, 1622—1642. doi: 10.1175/1520-0485(2000)030<1622:TETTKS>2.0.CO;2
3. Nakamura T., Awaji T. Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: a three-dimensional nonhydrostatic model experiment. J. Geophys. Res. 2004, 109, C09S07, 1—22. doi: 10.1029/2003JC001850
4. Rabinovich A.B., Thomson R.E., Bograd S.J. Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands. J. Oceanogr. 2002, 58, 661—671. doi: 10.1023/A:1022890222516
5. Ohshima K., Nakanowatari T., Riser S., Wakatsuchi M. Seasonal variation in the in-and outflow of the Okhotsk Sea with the North Pacific. Deep Sea Res. II. 2010, 57, 1247—1256. doi: 10.1016/j.dsr2.2009.12.012
6. Ohshima K.I., Fukamachi Y., Mutoh T. et al. A generation mechanism for mesoscale eddies in the Kuril Basin of the Okhotsk Sea: baroclinic instability caused by enhanced tidal mixing. J. Oceanogr. 2005, 61, 247—260. doi: 10.1007/s10872-005-0035-1
7. Katsumata K., Yasuda I. Estimates of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific. J. Oceanogr. 2010, 66, 489—504. doi: 10.1007/s10872-010-0041-9
8. Yagi M., Yasuda I. Deep intense vertical mixing in the Bussol’ Strait. Geophys. Res. Lett. 2012, 39, L01602. doi: 10.1029/2011GL050349
9. Nakamura T., Takeuchi Y., Uchimoto K., Mitsudera H. Effects of temporal variation in tide-induced vertical mixing in the Kuril Straits on the thermohaline circulation originating in the Okhotsk Sea. Progress in Oceanogr. 2014, 126, 135—145. doi: 10.1016/j.pocean.2014.05.007
10. Kida S., Qiu B. An exchange flow between the Okhotsk Sea and the North Pacific driven by the East Kamchatka Current. J. Geophys. Res.: Oceans. 2013, 118(12), 6747—6758. doi: 10.1002/2013JC009464
11. Mensah V., Ohshima K.I., Nakanowatari T., Riser S. Seasonal changes of water mass, circulation and dynamic response in the Kuril Basin of the Sea of Okhotsk. Deep Sea Res. I: Oceanographic Research Papers. 2019, 144, 115—131. doi: 10.1016/j.dsr.2019.01.012
12. Hydrometeorology and hydrochemistry of the seas. Volume 09. Sea of Okhotsk. Issue 1. Hydrometeorological conditions. Handbook. SPb., Gidrometeoizdat, 1998, 343 p.
13. Xing J., Davies A.M. On the importance of non-hydrostatic processes in determining tidally induced mixing in sill regions. Cont. Shelf Res. 2007, 27(16), 2162—2185. doi: 10.1016/j.csr.2007.05.012
14. Voltzinger N.E., Androsov A.A. Nonhydrostatic Dynamics of Straits of the World Ocean. Fundamentalnaya i Prikladnaya Gidrofizika. 2016, 9(1), 26—40.
15. Elvius T., Sundström A. Computationally efficient schemes and boundary conditions for a fine-mesh barotropic model based on the shallow-water equations. Tellus. 1973, 15, 132—156.
16. Voltzinger N.E. Long waves in shallow water. L., Gidrometeoizdat, 1985. 160 p.
17. Voltzinger N.E., Androsov A.A. Extreme nonhydrostatic tidal dynamics. Computational Technologies. 2019, 24, 2, 37—51. doi: 10.25743/ICT.2019.24.2.004
18. Wang Q., Danilov S., Sidorenko D., Timmermann R., Wekerle C., Wang X., Jung T., Schröter J. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 2014, 7, 663—693. doi: 10.5194/gmd-7-663-2014
19. Androsov A., Fofonova V., Kuznetsov I., Danilov S., Rakowsky N., Harig S., Brix H., Wiltshire K.H. FESOM-C v.2: coastal dynamics on hybrid unstructured meshes. Geosci. Model Dev. 2019, 12, 1009—1028. doi: 10.5194/gmd-12-1009-2019
20. Voltzinger N.E., Androsov A.A., Klevannyy K.A., Safrai A.S. Oceanological models of non hydrostatic dynamics: a review. Fundamentalnaya i Prikladnaya Gidrofizika. 2018, 11, 1, 3—20. doi: 10.7868/S207366731801001X
21. Androsov A., Voltzinger N., Kuznetsov I., Fofonova V. Modeling of nonhydrostatic dynamics and hydrology of the Lombok Strait. Water. 2020, 12(11), 3092. doi: 10.3390/w12113092
22. Egbert G.D., Bennett A.F., Foreman M.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99(C12), 24821—24852. doi: 10.1029/94JC01894
23. Egbert G.D., Erofeeva S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean Technol. 2002, 19, 183—204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
24. GEBCO Bathymetric Compilation Group 2019. The GEBCO_2019 Grid – a continuous terrain model of the global oceans and land. British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. 2019. doi: 10/c33m
25. Androsov A., Boebel O., Schröter J., Danilov S., Macrander A., Ivanciu I. Ocean bottom pressure variability: can it be reliably modeled? J. Geophys. Res.: Oceans. 2020, 125, e2019JC015469. doi: 10.1029/2019JC015469
26. Androsov A.A., Klevanny K.A., Salusti E.S., Voltzinger N.E. Open boundary conditions for horizontal 2-D curvilineargrid long-wave dynamics of a strait. Adv. Water Resour. 1995, 18, 267—276. doi: 10.1016/0309-1708(95)00017-D
Review
For citations:
Rodionov A.A., Androsov A.A., Fofonova V.V., Kuznetsov I.S., Voltzinger N.E. Modeling the tidal dynamics of the northern straits of the Kuril Ridge. Fundamental and Applied Hydrophysics. 2021;14(3):20-34. (In Russ.) https://doi.org/10.7868/S2073667321030023