Preview

Fundamental and Applied Hydrophysics

Advanced search

The Portrait of Freak Wave

Abstract

The methods of extreme waves modeling are discussed. The exact one-dimensional model for potential waves is used for simulation of extreme wave up to onset of breaking. The evolution of wave shape and its energy are represented. The destroying properties of wave are discussed.

About the Author

D. V. Chalikov
Санкт-Петербургский филиал Института океанологии им. П.П. Ширшова РАН
Russian Federation


References

1. Куркин А.А., Пелиновский Е.Н. Волны-убийцы: факты, теория и моделирование. Н.Новгород: ННГУ, 2004. 157 с.

2. Stokes G.G. On the theory of oscillatory waves // Trans. cambridge philos. soc. N 8. P.441–445; Math. phys. pap. 1847. N 1. P.197−229.

3. Crapper G.D. An exact solution for progressive capillary waves of arbitrary amplitude // J. of fluid mech. 1957. N 96. P.417−445.

4. Chalikov D.V. Freak waves: their occurrence and probability // Phys of fluid. 2009. N 21. 076602; doi:10.1063/1.3175713.

5. Whitney J.C. The numerical solution of unsteady free-surface flows by conformal mapping // Proc. Second Inter. Conf. on «Numer. fluid dynamics» / Ed. M.Holt. Springer-Verlag. 1971. P.458−462.

6. Chalikov D.V., Sheinin D. Numerical modeling of surface waves based on principal equations of potential wave dynamics. Technical Note. NOAA/NCEP/OMB. 1996. 54 p.

7. Chalikov D.V., Sheinin D. Direct Modeling of One-dimensional Nonlinear Potential Waves. Nonlinear Ocean Waves / Ed. W.Perrie. Advances in fluid mechanics. 1998. V.17. P.207−258.

8. Chalikov D.V. Statistical properties of nonlinear one-dimensional wave fields // Nonlinear processes in geophysics. 2005. N 12. P.1−19.

9. Чаликов Д.В. Трансформация гармонических волн на глубокой воде // Фундаментальная и прикладная геофизика. 2010. № 3(9). С.14−21.

10. Chalikov D.V., Sheinin D. Numerical simulation of surface waves based on equations of potential wave dynamics // Proc. ONR «Ocean waves workshop». Tucson, Arizona, 1994.

11. Chalikov D.V., Sheinin D. 2005. Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface // J. Comp. phys. 2005. N 210. P.247−273.

12. Sheinin D., Chaliko D.V. Hydrodynamical modeling of potential surface waves // Problems of hydrometeorology and environment on the eve of XXI century. Proc. of int. theor. conf. SPb.: June 24−25. 2000.

13. Chalikov D.V. Simulation of Benjamin-Feir instability and its consequences // Physics of fluid. 2007. V.19. 016602−15.

14. Чаликов Д.В. Статистика экстремальных ветровых волн // Фундаментальная и прикладная геофизика. 2009. № 3(5). С.4−24.

15. Zakharov V.E., Dyachenk, A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface // Eur. J. Mech. B/Fluids. 2002. N 21. С.283−291.

16. Zakharov V.E., Dyachenk, A.I., Prokofiev A.O. Freak waves as nonlinear stage of Stokes wave modulation instability // Eur. J. Mech. B/Fluids. 2006. N 25. P.677−692.

17. Dyachenko A.I., Zakharov V.E. Modulation instability of Stokes wave – freak wave // JETP Let. 2005. V.81. P.255−259.

18. Dyachenko A.I., Zakharov V.E. On the Formation of Freak Waves on the Surface of Deep Water // JETP Let. 2008. V.88. P.307−311.

19. Шамин Р.В. О существовании гладких решений уравнений Дьяченко, описывающих неустановившиеся течения идеальной жидкости со свободной поверхностью // Докл. АН. 2006. Т.406, № 5. С.112−113.

20. Chalikov D.V. Interactive modeling of surface waves and boundary layer. Ocean Wave Measurements and Analysis. ASCE // Proc. oh the third Intern. Symp. WAVES 97. 1998. P.1525−1540.

21. Chalikov D.V., Rainchik S. Coupled Numerical Modelling of Wind and Waves and the Theory of the Wave Boundary Layer // Boundary-layer meteorol (2011). 2010. V.138. P.1–41. DOI 10.1007/s10546-010-9543-7.

22. Babanin A.V., Chalikov D.V. Numerical investigation of turbulence generation in non-breaking potential waves // J. Phys. Oceanography (submitted).

23. Ruban V.P. Conformal variables in the numerical simulations of long-crested rogue waves // Europ. phys. J. spec. Top. 2010. N 185. P.17−33.

24. Janssen P. Nonlinear four-wave interaction and freak waves // J. Phys. oceanogr. 2003. N 33. P.2001−2018.

25. Benjamin T.B., Feir J.E. The disintegration of wave trains in deep water // J. Fluid. mech. 1967. N 27. P.417−430.

26. Hasselmann K. Weak-interaction theory of ocean waves. Hamburg: Univ. of Hamburg, 1967. 112 p.

27. Onorato М., Waseda Т., Toffoli А., Cavaleri L., Gramstad O., Janssen P.A.E.M., Kinoshita T., Monbaliu J., Mori N., Osborne A.R., Serio M., Stansberg C.T., Tamura H., Trulsen K. Statistical Properties of Directional Ocean Waves: The Role of the Modulational Instability in the Formation of Extreme Events // Phys. Rev. Let. 2009. V.102. P.114502.

28. Clamond D.V., Grue J. A fast method for fully nonlinear water wave dynamics // J. Fluid mech. 2001. N 447. P.337−355.

29. Chalikov D.V., Babanin A.V. Numerical Modeling of Three-Dimensional Periodic Fully Nonlinear Potential Waves // J. Сomp. Рhys. 2011. (submitted).


Review

For citations:


Chalikov D.V. The Portrait of Freak Wave. Fundamental and Applied Hydrophysics. 2012;5(1):5-13. (In Russ.)

Views: 89


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)