Preview

Fundamental and Applied Hydrophysics

Advanced search

Energy Spectra of Ensemble of Nonlinear Capillary Waves on a Fluid Surface

Abstract

Обсуждается проблема описания спектров нелинейных капиллярных волн на поверхности жидкости. Обычно трехволновые взаимодействия рассматриваются как главный фактор, определяющий энергетический спектр таких волн. Показано, что необходимо принимать во внимание четырехволновые взаимодействия капиллярных волн, которые ведут в кинетическом режиме волновой турбулентности к появлению степенной асимптотики в энергетическом спектре k-13/6 в случае одномерной задачи и k-3/2 в пространственной задаче.

About the Authors

E. Kartashova
Johannes Kepler University
Austria

Linz



A. Kartashov
PVA
Austria

Waidhofen an der Ibbs



References

1. Ermakov S.A., Pelinovsky E.N. Variation of the spectrum of wind ripple on coastal waters under the action of internal waves // Dynamics of Atmospheric and Oceans. 1984. V.8. P.95-100.

2. Ocean Subsurface Layer: Physical Processes and Remote Sensing / Eds: E. Pelinovsky, V. Talanov. Inst. of Appl. Phys. Press. N. Novgorod, 1999.

3. Jackson C.R. An Atlas of Internal Solitary-like Waves and their Properties // Global Ocean Associates, USA, 2004.

4. Shats M., Punzmann H., Xia H. Capillary Rogue Waves // Phys. Rev. Let. 2010. V.104. P.104503.

5. Abdurakhimov L.V., Brazhnikov M.Yu., Kolmakov G.V., Levchenko A.A. Study of high-frequency edge of turbulent cascade on the surface of He-II // J. Phys: Conference Series 2009. V.150. P.032001.

6. Xia H., Shats M., Punzmann H. Modulation instability and capillary wave turbulence // European Physical Let. 2010. V.91. P.14002.

7. Deike L., Berhanu M., Falcon E. Decay of capillary wave turbulence // Phys. Rev. 2012. E.85. P.066311.

8. Zakharov V.E., Filonenko N.N. Weak turbulence of capillary waves // J. Appl. Mech. Tech. Phys. 1967. V.4. P.500.

9. Zakharov V.E., L’vov V.S., Falkovich G. Kolmogorov Spectra of Turbulence. Springer, 1992.

10. Kartashova E. Nonlinear Resonance Analysis. Cambridge University Press. 2010.

11. Kartashova E. Energy spectra of 2D gravity and capillary waves with narrow frequency band excitation // Europhys. Let. 2012. V.97. P.30004.

12. Kartashova E. Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes // Phys. D. 1990. V.46. P.43.

13. Kartashova E. Discrete wave turbulence // Europhys. Let. 2009. V.87. P.44001.

14. Zakharov V.E., Korotkevich A.O., Pushkarev A.N., Dyachenko A.I. Mesoscopic wave turbulence // JETP Let. 2005. V.82. P.487–91.

15. Benjamin T.B., Feir J.E. The disintegration of wavetrains in deep water. P.1: Fluid Mech. 1967. V.27. P.417–31.

16. Hogan S.J. The forth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. 1985. A.402. P.359-72.

17. Pushkarev A.N. On the Kolmogorov and frozen turbulence in numerical simulation of capillary waves. // Eur. J. Mech. B/Fluids 1999. V.18. P.345.

18. Pushkarev A.N., Zakharov V.E. Turbulence of capillary waves - theory and numerical simulation // Phys 2000. D.135. P.98–116.

19. Kartashova E. Time scales and structures of wave interaction exemplified with water waves // Europhys. Let. 2013. V.102. P.44005.


Review

For citations:


Kartashova E., Kartashov A. Energy Spectra of Ensemble of Nonlinear Capillary Waves on a Fluid Surface. Fundamental and Applied Hydrophysics. 2013;6(3):84-93.

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)