Preview

Fundamental and Applied Hydrophysics

Advanced search

Modeling Energy Conservation in a Completely Integrable Boussinesq system

Abstract

Представлен вывод плотности энергии и потока энергии морских волн в рамках модели Каупа, являющейся одним из вариантов системы Буссинеска. Этот вывод основан на процедуре восстановления поля скорости и давления в объеме жидкости под свободной поверхностью, обобщающей метод, ранее предложенный авторами. Показано, что полная волновая энергия совпадает с гамильтонианом, представленным В. Крейгом и М. Грувсом.

About the Authors

A. Ali
Департамент математики, Университет Бергена
Norway


H. Kalisch
Департамент математики, Университет Бергена
Norway


References

1. Ali A., Kalisch H. Mechanical balance laws for Boussinesq models of surface water waves // J. Nonlinear Sci. 2012. V.22. P.371–398.

2. Craig W., Groves M.D. Hamiltonian long-wave approximations to the water-wave problem // Wave Motion, 1994. V.19. P.367–389.

3. Boussinesq J. Th´eorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond // J. Math. Pures Appl. 1872. V.17. P.55–108.

4. Peregrine D.H. Long waves on a beach // J. Fluid Mech. 1967. V.27. P.815–827.

5. Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation // J. Waterway, Port, Coastal and Ocean Engineering 1993. V.119. P.618–638.

6. Bona J. L., Chen M., Saut J.-C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory // J. Nonlinear Sci. 2002. V.12. P.283–318.

7. Bona J.L., Chen M., Saut J.-C. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory, Nonlinearity 2004. V.17. P.925–952.

8. Kaup D.J. A higher-order wave equation and the method for solving it // Prog. Theor. Phys. 1975. V.54. P.396–408.

9. Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid // J. Appl. Mech. Tech. Phys. 1968. V.9. P.190–194.

10. Craig W., Guyenne P., Kalisch H. Hamiltonian long-wave expansions for free surfaces and interfaces // Com. Pure Appl. Math. 2005. V.58. P.1587–1641.

11. Dutykh D., Dias F. Energy of tsunami waves generated by bottom motion // Proc. R. Soc. Lond. Ser. 2009. A.465. P.725–744.

12. Whitham G.B. Linear and Nonlinear Waves. Wiley, New York, 1974. Рус. пер. Г.Б. Уизем. Линейные и нелинейные волны. М: Мир, 1974.

13. Ali A., Kalisch H. Energy balance for undular bores // C.R.Mecanique 2010. V.338. P.67–70.

14. Kalisch H., Senthilkumar A. Derivation of Boussinesq’s shoaling law using a coupled BBM system // Nonlin. Processes Geophys. 2013. V.20. P.1–7.

15. Christov C.I. An energy-consistent dispersive shallow-water model // Wave Motion, 2001. V.34. P.161–174.

16. Peregrine D.H. Equations for water waves and the approximation behind them // Waves on beaches and resulting sediment transport. Procs. of an advanced seminar conducted by the Mathematics Research Center. N.Y.: Academic Press, 1972. P.95–121.

17. Pelinovsky E.N., Choi H.S. A Mathematical model for nonlinear waves due to moving disturbances in a basin of variable depth // J. Korean Soc. Coastal and Ocean Eng. 1993. V.5. P.191–197.

18. Stoker J.J. Water Waves: The Mathematical Theory with Applications // Pure and Applied Mathematics. V.IV. N.Y.: Interscience Publishers, 1957.


Review

For citations:


Ali A., Kalisch H. Modeling Energy Conservation in a Completely Integrable Boussinesq system. Fundamental and Applied Hydrophysics. 2013;6(3):78-83.

Views: 66


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)