Modeling of Propagating Long Internal Waves in an Inhomogeneous Ocean: the Theory and its Verification
Abstract
An asymptotic model of long internal wave transformation in horizontally inhomogeneous ocean is discussed. This model is based on the Gardner equation (extended Koreweg – de Vries equation). Verification of the model using the ocean experimental data from the SEASAM experiment on the Malin shelf is carried out. It is shown that the model is appropriate for rough estimation of amplitudes and shapes of internal waves. The ad-vantage of the model is related to the simplicity of accounting for the horizontal inhomogeneity of hydrological fields and short time needed for calculations.
About the Authors
T. G. TalipovaRussian Federation
E. N. Pelinovsky
Russian Federation
References
1. Fraser N. Surfing an oil rig // Energy Rev. 1999. V.20, N 4.
2. Song Z.J., B.Teng Y., Gou L., Lua Z.M., Shi Y., Xiao Y. Qu. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses // App. Ocean Res. 2011. V.33. P.120–129.
3. Vlasenko V., Stashchuk N. Three-dimensional shoaling of large-amplitude internal waves // J. Geoph.Res. 2007. V.112. C11018.
4. Liu A., Holbrook J., Apel J. Nonlinear internal wave evolution in the Sulu sea // J. Phys. Oceanogr. 1985. V.15. P.1613–1624.
5. Liu A.K., Chang Y.S., Hsu M.-K., Liang, N.K. Evolution of nonlinear internal waves in the East and South China Seas // J. Geoph. Res. 1998. V.103. P.7995–8008.
6. Orr M.H., Mignerey P.C. Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves // J. Geophys. Res. 2003. V.108, N C3. P.3064.
7. Holloway P., Pelinovsky E., Talipova T., Barnes B. A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf // J. Phys.l Oceanogr. 1997. V.27, N 6. P.871–896.
8. Holloway P, Pelinovsky E., Talipova T. A Generalized Korteweg-de Vries Model of Internal Tide Transformation in the Coastal Zone // J. Geophys. Res. 1999. V.104, N C8. P.18333–18350.
9. Holloway P., Pelinovsky E., Talipova T. Internal tide transformation and oceanic internal solitary waves. Chapter 2 in the book: Environmental Stratified Flows / Ed. by R.Grimshaw. Kluwer Acad. Publ. 2001. P. 29–60.
10. Пелиновский Е.Н., Полухин Н.В., Талипова Т.Г. Моделирование характеристик поля внутренних волн в Арктике // Поверхностные и внутренние волны в Арктических морях. СПб.: Гидрометеоиздат, 2002. C.235–279.
11. Pelinovsky E., Talipova T., Small J. Numerical modelling of the internal bores and generation of internal solitons at the Malin Shelf // The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers. Eds: T.Duda and D. Farmer Technical report WHOI-99-07. 1999. C.129–236.
12. Grimshaw R, Pelinovsky E., Talipova T., Kurkin A. Simulation of the transformation of internal solitary waves on oceanic shelves // J. Phys. Oceanogr. 2004. V.34. P.2774–2791.
13. Grimshaw R., Pelinovsky E., Talipova T. Modeling internal solitary waves in the coastal ocean // Survey in Geophysics. 2007. V.28, N 2. P.273–298.
14. Small J., Sawyer T., Scott J. The evolution of an internal bore at the Malin shelf edge // Ann. Geophys. 1999. V.17. P.547–565.
15. Sherwin T.J. Analysis of an internal tide observed on the Malin Shelf, north of Ireland // J. Phys. Ocean. 1988. V.18, N 7. P.1035–1050.
16. Sherwin T.J., Taylor N.K. Numerical investigations of linear internal tide generation in the Rockall Trough // Deep-Sea Research. 1990. V.37, N 10. P.1595–1618.
17. UNESCO Algorithms for computation of fundamental properties of sea water // UNESCO Techn. pap. 1983. V.44. Mar. sci.
Review
For citations:
Talipova T.G., Pelinovsky E.N. Modeling of Propagating Long Internal Waves in an Inhomogeneous Ocean: the Theory and its Verification. Fundamental and Applied Hydrophysics. 2013;6(2):46-54. (In Russ.)