Preview

Fundamental and Applied Hydrophysics

Advanced search

Evolution of Large Amplitude Internal Waves of in a Swash Zone

Abstract

The study of the dynamics of short-period internal waves of large amplitude in the «swash» zone located above the contact line of the bottom with the main thermocline was carried out. It is shown that the generation of packets of solitary waves is intermittent. It is observed during the months of the existence of developed sea-sonal thermocline (August-October). The spreading and breaking of internal waves contributes significantly to the mass transfer and «ventilation» in the shelf zone. The analysis of the structure of the bottom solitary waves in the «swash» zone shows that they can be detected in the form of symmetric lenses of cold water or they take the saw-shape form, depending on the breaking phase.

About the Authors

V. F. Kukarin
Институт неорганической химии им. А.В.Николаева СО РАН
Russian Federation


V. Y. Liapidevskii
Институт гидродинамики им. М.А.Лаврентьева СО РАН
Russian Federation


V. V. Navrotsky
Тихоокеанский океанологический институт им. В.И.Ильичева ДВО РАН
Russian Federation


F. F. Khrapchenkov
Тихоокеанский океанологический институт им. В.И.Ильичева ДВО РАН
Russian Federation


References

1. Helfrich K.R., Melville W.K. Long nonlinear internal waves // Ann. Rev. Fluid Mech. 2006. V.38. P.395–425.

2. Grimshaw R., Talipova T., Pelinovsky E., Kurkina O. // Internal solitary waves: propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 2010. V.17. P.633–649.

3. Scotti A., Pineda J. Observation of the very large and steep internal waves of elevation near the Massachusetts coast // Geophys. Res. Let. 2004. V.31. L22307.

4. Klymak M., Moum J.N. Internal solitary waves of elevation advancing on a shoaling shelf // Geophys. Res. Let. 2003. V.30, N 20. P.2045. doi:10.1029/2003GL017706.

5. Bourgault D., Kelley D.E., Galbraith P.S. Interfacial solitary wave run-up in the St. Lawrence Estuary // J. Marine Research. 2005. V.63. P.1001–1015.

6. Lamb K. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores // J. Fluid Mech. 2003. V.478. P.81–100.

7. Maderich V., Talipova T., Grimshaw R., Pelinovsky E., Choi B. H., Brovchenko I., Terletska K., Kim D.C. The transformation of an interfacial solitary wave of elevation at a bottom step // Nonlin. Proc. in Geophysics. 2009. 16. P.33–4.8.

8. Серебряный А.Н., Пао К.П. Прохождение нелинейной внутренней волны через точку переворота на шельфе // ДАН. 2008. Т.420, № 4. С.543–547.

9. Vlasenko V., Hutter K. Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography // J. Phys. Oceanography. 2002. V.32. P.1779–1793.

10. Umeyama V., Shintani T. Visualization analysis of runup and mixing of internal waves on an upper slope // J. Waterway, Port, Coastal and Ocean Engineering. 2004. V.130, N 2. P.89–97.

11. Wallace B.C., Wilkinson D.L. Run-up of internal waves on a gentle slope in a two-layered system // J. Fluid Mech. 1988. V.191. P.419–442.

12. Серебряный А.Н. Проявление свойств солитонов во внутренних волнах на шельфе // Изв. РАН. Физика атмосферы и океана. 1993. Т.29, № 2. С.244–252.

13. Рутенко А.Н. Экспериментальные исследования генерации придонной турбулентности внутренними волнами // Морской гидрофиз. журн. 1989. № 3. С.58–61.


Review

For citations:


Kukarin V.F., Liapidevskii V.Y., Navrotsky V.V., Khrapchenkov F.F. Evolution of Large Amplitude Internal Waves of in a Swash Zone. Fundamental and Applied Hydrophysics. 2013;6(2):35-45. (In Russ.)

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)