Preview

Fundamental and Applied Hydrophysics

Advanced search

Influence of Dispersion on the Propagation of Internal Waves in a Shelf Zone

Abstract

Wave motions of stratified fluid over uneven bottom are considered. The results of the laboratory experiments on the transformation of nonlinear internal waves of the first and second mode on the slope are presented. The numerical calculations of the evolution of large-amplitude internal waves using a mathematical model of the three-layer shallow water with the non-hydrostatic pressure distribution are compared with the experimental data. The exact solution, which represents an asymmetric solitary wave of the second mode, is constructed. The experimental confirmation of the existence of asymmetric solitary waves propagating along the interface between the homogeneous layers of different densities is presented.

About the Authors

N. V. Gavrilov
Институт гидродинамики им. М.А.Лаврентьева СО РАН
Russian Federation


V. Y. Liapidevskii
Институт гидродинамики им. М.А.Лаврентьева СО РАН
Russian Federation


Z. A. Liapidevskaya
Институт вычислительной математики и математической геофизики СО РАН
Russian Federation


References

1. Helfrich K.R., Melville W.K. Long nonlinear internal waves // Ann. Rev. Fluid Mech. 2006. V.38. P.395–425.

2. Lamb K.G. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores // J. Fluid Mech. 2003. V.478. P.81–100.

3. Derzho O.G., Grimshaw R. Asymmetric internal solitary waves with a trapped core in deep fluids // Phys. Fluids. 2007. V.19. 096601.

4. Scotti A., Pineda J. Observation of very large and steep internal waves of elevation near the Massachusetts coast // Geophy. Res. Let. 2004. V.31. L22307. P.1–5.

5. Wallace B.C., Wilkinson D.L. Run up of internal waves on a gentle slope // J. Fluid Mech. 1988. V.191. P.419–442.

6. Grimshaw R., Pelinovsky E., Talipova T., Kurkina O. Internal solitary waves: propagation, deformation and disintegration // Nonlinear Processes Geoph. 2010, V.17. P.633–649.

7. Серебряный А.Н., Пао К.П. Прохождение нелинейной внутренней волны через точку переворота на шельфе // ДАН. 2008. Т.420, № 4. С.543–547.

8. Гаврилов Н.В., Ляпидевский В.Ю. Уединенные волны конечной амплитуды в двухслойной жидкости // ПМТФ. 2010. Т.51, №4 С.26–38.

9. Davis R.E., Acrivos A. Solitary internal waves in deep water // J. Fluid Mech. 1967. V.29. P.593–608.

10. Maxworthy T. On the formation of nonlinear internal waves from the gravitational collapse of mixing regions in two and three dimensions // J. Fluid Mech. 1980. V.96. P.47–64.

11. Kao T.W., Pao K. H.-P. Wake collapse in the thermocline and internal solitary waves // J. Fluid Mech. 1979. V.97. P.115–127.

12. Tung K.-K., Chan T.F., Kubota T. Large amplitude internal waves of permanent form // Studies Appl. Math. 1982. V.66. P.1–44.

13. Honji H., Matsunaga N., Sugihara Y., Sakai K. Experimental observation of internal symmetric solitary waves in a two-layer fluid // Fluid Dyn. Res. 1995. V.15. P.89–102.

14. Stamp A.P., Jacka M. Deep-water internal solitary waves // J. Fluid Mech. 1995. V.305. P.347–371.

15. Гаврилов Н.В, Ляпидевский В.Ю. Симметричные уединенные волны на границе раздела жидкостей // ДАН. 2009. Т.429, № 2. С.187–190.

16. Gavrilov N.V., Liapidevskii V., Gavrilova K. Mass and momentum transfer by solitary internal waves in a shelf zone // Nonlinear Processes Geoph. 2012. 19. P.265–272.

17. Кукарин В.Ф., Ляпидевский В.Ю., Навроцкий В.В., Храпченков Ф.Ф. Эволюция внутренних волн большой амплитуды в шельфовой зоне моря (см. наст. сб.).

18. Ляпидевский В.Ю., Тешуков В.М. Математические модели распространения длинных волн в неоднородной жидкости. Новосибирск: Изд-во СО РАН, 2000. 420 с.

19. Choi W. Modeling of strongly nonlinear internal gravity waves / Proceedings of the Fourth International Conference on Hydrodynamics Eds:. Y. Goda, M. Ikehata, K.Suzuki. 2000. P.453–458.

20. Gavrilov N.V., Liapidevskii V., Gavrilova K. Large amplitude internal solitary waves over a shelf // Nat. Hazards Earth Syst. Sci. 2011. V.11. P.17–25.

21. Le Metayer O., Gavrilyuk S., Hank S. A numerical scheme for the Green-Naghdi model // J. Comput. Phys. 2010. V.229. P.2034–2045.


Review

For citations:


Gavrilov N.V., Liapidevskii V.Y., Liapidevskaya Z.A. Influence of Dispersion on the Propagation of Internal Waves in a Shelf Zone. Fundamental and Applied Hydrophysics. 2013;6(2):25-34. (In Russ.)

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)