Preview

Fundamental and Applied Hydrophysics

Advanced search

Submesoscale processes and dynamics in the White Sea. State of the art and future research

Abstract

This paper presents a discussion on recent data obtained from combined analysis of remote sensing (satellite) and in situ observations for studying submesoscale dynamics in the White Sea associated with internal waves, eddies and frontal features. Multi-year complex monitoring revealed the widespread occurrence of short-period internal waves in the White Sea and allowed to obtain their statistical properties. Main characteristics of submesoscale eddies in the White Sea were also mapped. Statistical analysis shows that main eddy activity areas are found in the vicinity of hydrological fronts. The results of satellite IR data processing provide statistical description of mean sea surface temperature gradient and characteristics of major fronts in the White Sea on the monthly and decadal scales. Field observations in areas with pronounced vertical stratification revealed strong dynamics of eddies in the upper layer and significant variability of characteristics and position of the frontal zones within a tidal cycle over irregular topography. The performed analysis strongly suggests that in-depth understanding of submesoscale variability of hydrophysical fields in the White Sea under the influence of the tidal flow should certainly capitalize on synergy of satellite and in situ observations combined with modeling. Perspectives of such a research for the White Sea are discussed and outlined.

About the Authors

A. A. Rodionov
St.-Petersburg Branch of P. P. Shirshov Institute of Oceanology RAS
Russian Federation

St.-Petersburg



D. A. Romanenkov
St.-Petersburg Branch of P. P. Shirshov Institute of Oceanology RAS
Russian Federation

St.-Petersburg



A. V. Zimin
St.-Petersburg Branch of P. P. Shirshov Institute of Oceanology RAS; Russian State Hydrometeorological University
Russian Federation

St.-Petersburg,



I. E. Kozlov
Russian State Hydrometeorological University; Klaipeda University
Russian Federation

St.-Petersburg; Klaipeda



B. Chapron
French Research Institute for Exploitation of the Sea; Russian State Hydrometeorological University
France

Brest (France); St.-Petersburg



References

1. Oceanology. Ocean Physics. Vol. 1: Hydrophysics of Ocean / Eds. V. M. Kamenkovich, A. P. Monin. Мoscow, Nauka, 1978. 456 p. (in Russian).

2. Oceanology. Ocean Physics. Vol. 2: Ocean Hydrodynamics / Eds. V. M. Kamenkovich, A. P. Monin. Мoscow, Nauka, 1978. 455 p. (in Russian).

3. Korchagin N., Monin A. Mesooceanology. Moscow, Nauka, 2004. 175 p. (in Russian).

4. Thomas L. N., Tandon A., Mahadevan A. Submesoscale Processes and Dynamics, in Ocean Modeling in an Eddying Regime / Eds M. W. Hecht, H. Hasumi. American Geophysical Union, Washington, D. C, 2008. P. 17—38. doi: 10.1029/177GM04.

5. Lévy M., Ferrari R., Franks P. J. S., Martin A. P., Rivière P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 2012, 39, L14602. doi:10.1029/2012GL052756.

6. Munk W. H., Armi L., Fischer K., Zachariasen F. Spirals on the sea. Proc. R. Soc. London, Ser. A. 2000, 456, 1217—1280.

7. D'Asaro E. A. Generation of submesoscale vortices: A new mechanism. J. Geophys. Res. 1988, 93(C6), 6685— 6693. doi:10.1029/JC093iC06p06685.

8. Nakamura T., Matthews J. P., Awaji T., Mitsudera H. Submesoscale eddies near the Kuril Straits: Asymmetric generation of clockwise and counterclockwise eddies by barotropic tidal flow. J. Geophys. Res. 2012, 117, C12014. doi:10.1029/2011JC007754.

9. Redondo J. M., Matulka A., Platonov A., Sekula E., Fraunie P. Eddy measurements, coastal turbulence and statistics in the gulf of Lions. Ocean Sci. Discuss. 2013, 10, 55—81. http://www.ocean-sci- discuss.net/10/55/2013/doi:10.5194/osd-10-55-2013.

10. Gurova E., Chubarenko B. Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic. Oceanologia. 2012, 54 (4), 631—654.

11. Susanto R. D., Mitnik L. M., Zheng Q. Ocean internal waves observed in the Lombok Strait. Oceanography. 2005, 18 (4), 80—87.

12. Jackson C. R. An atlas of internal solitary-like waves and their properties. (2nd ed.). Global Ocean Associates, Alexandria, VA, 2004. 560 p.

13. Jackson C. R., da Silva J. C. B., Jeans G. The generation of nonlinear internal waves. Oceanography. 2012, 25 (2), 108—123. doi:10.5670/oceanog.2012.46.

14. Zeng K., Alpers W. Generation of internal solitary waves in the Sulu Sea and their refraction by bottom topography studied by ERS SAR imagery and a numerical model. Int. J. Remote Sensing. 2004, 25 (7—8), 1277— 1281.

15. Da Silva J. C. B., New A. L., Azevedo A. On the role of SAR for observing «local generation» of internal solitary waves off the Iberian Peninsula. Canadian Journal of Remote Sensing. 2007, 33 (5), 388—403. doi:10.5589/m07-041.

16. Grimshaw R., Pelinovsky E., Talipova T. Modeling internal solitary waves in the coastal ocean. Surveys in Geophysics. 2007, 28, 273—298. doi:10.1007/s10712-007-9020-0.

17. Grimshaw R., Helfrich K., Scotti A. Preface Large amplitude internal waves in the coastal ocean. Nonlin. Processes Geophys. 2011, 18, 653—655. doi:10.5194/npg-18-653-2011.

18. Serebryany A. N. Slickand suloy generating processes in the sea. Internal waves. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2012, 9, 2, 275—286. (in Russian).

19. Serebryany A. N., Paka V. T., Korzsh A. O. Currents and Internal Waves Studies in the White Sea Using ADCP. Geology of Seas and Oceans. XVIII International Conference on Marine Geology. Vol 3. Chief Ed. A.P. Lisitzin. Moscow. GEOS, 2009, 245—250. (in Russian).

20. Morozov E. G., Paka V. T. Internal waves in a high-latitude region. Oceanology. 2010, 50 (5), 668—674.

21. Morozov E. G., Marchenko A. V. Short-period internal waves in an Arctic fjord (Spitsbergen) Izvestiya, Atmospheric and Oceanic Physics. 2012, 48 (4), 401—408.

22. Bondur V. G., Grebenyuk Yu. V., Morozov E. G. Satellite recording and modeling of short internal waves in coastal zones of the ocean. Doklady Earth Sciences. 2008, 418 (1), 191—195.

23. Zatsepin A. G., Baranov V. I., Kondrashov A. A., Korzh A. O., Kremenetskiy V. V., Ostrovskii A. G., Soloviev D. M. Submesoscale eddies over the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology. 2011, 51 (4), 554—567.

24. Karimova S. S. Statistical Analysis of Submesoscale Eddies in the Baltic, Black and Caspian Seas Using Satellite SAR Images. Issledovanie Zemli iz kosmosa. 2012, 3, 31—47. (in Russian).

25. Gade M., Byfield V., Ermakov S., Lavrova O., Mitnik L. Slicks as indicators for marine processes. Oceanography. 2013, 26 (2), 138—149.

26. Mityagina M. I., Lavrova O. Yu. Satellite Observations of Eddy and Wave Processes in the Coastal Waters of the North-Eastern Black Sea. Issledovanie Zemli iz kosmosa. 2009, 5, 72—79. (in Russian).

27. Rogachev K. Submesoscale streamers on the continental shelf of the Peter The Great Bay. Current problems in remote sensing of the earth from space. 2010, 7, 3, 186—190. (in Russian).

28. Hydrometeorology and hydrochemistry of the Seas of the USSR. The White Sea, Part 1: Hydrometeorological conditions, Vol. 2. / Ed. B. H. Glukhovsky Leningrad, Gidrometeoizdat, 1991. 240 p. (in Russian).

29. Babkov A. I. Hydrology of the White Sea. St. Petersburg. Zoological Institute of RAS, O. A. Scarlato White Sea Biological station, 1998. 96 p. (in Russian).

30. White Sea: Its Marine environment and Ecosystem dynamics influenced by global change / Ed. By N. Filatov, D. Pozdnyakov, O. Johannessen et al. London, Springer-Praxis, 2005. 472 p.

31. System of the White Sea. Water basin interacting with atmosphere, cryosphere, river runoff and biosphere / Ed. P. Lisitzyn. Moscow, Nauchny Mir, 2012. 782 p. (in Russian).

32. Semenov E. V. Numerical modeling of the White Sea dynamics and monitoring problem Izvestiya, Atmospheric and Oceanic Physics. 2004, 40 (1), 114—126. (in Russian).

33. Kagan B. A., Timofeev A. A. Dynamics and energetics of surface and internal semidiurnal tides in the White Sea. Izvestiya, Atmospheric and Oceanic Physics. 2005, 41 (4), 498—512. (in Russian).

34. Inzhebeykin Yu. I. The White Sea level oscillations. Ekaterinburg, UrO RАN, 2003. 152 p. (in Russian).

35. May R. I., Fouks V. R.. Nonlinear barotropic tides and tidal residual circulation in the White Sea. International Specialized Exhibition and Conference «AQUATERRA-2004». Saint-Petersburg, 2004. С. 197—201. (in Russian).

36. Chernov I., Tolstikov A. Numerical modelling of the white sea large-scale dynamics. Trudy KarNC RAN, N 4, Ser. Matematicheskoye modelirovaniye I informacionniye tekhnologii. Petrozavodsk, KarNC RAN, 2014, 137—142. (in Russian).

37. Volzhenskij M. N., Rodionov A. A., Semenov E. V., Filatov N. N., Zimin A. V., Bulatov M. B. Experience of Verification of Operative Model of Monitoring of the White Sea in 2004—2008. Fundamentalnaya i prikladnaya gidrofizika. 2009, 3, 33—41. (in Russian).

38. Rodionov A. A., Semenov E. V., Zimin A. V. Advancement of the Real-Time Analysis and Forecast Hydrological Sea Fields in Behalf of the Defense and the Conceal of Naval Ships. Fundamentalnaya i prikladnaya gidrofizika. 2012, 5, 2, 89—108. (in Russian).

39. Zimin A. V., Rodionov A. A., Nikolaev V. G., Zhegulin G. V. Interrelation mesoscale and smallscale hydrophysical processes in roughnesses of relief of bottom. Proceedings of IX all-Russian conference «Advanced technologies of hydroacoustics and hydrophysics». Saint-Petersburg, Nauka, 2008, 382—386. (in Russian).

40. Zimin A. V., Rodionov A. A., Nikolaev V. G. Observations of short-period internal waves in the White Sea. Proceedings of X all-Russian conference «Advanced technologies of hydroacoustics and hydrophysics». SaintPetersburg, Nauka, 2010, 229—232. (in Russian).

41. Zimin A. V. Experimental studies of the hydrophysical fields variability on the White Sea shelf in areas with different vertical structure of waters / System of the White Sea. Water basin interacting with atmosphere, cryosphere, river runoff and biosphere. Ed. A. P. Lisitzyn. Moscow, Nauchny Mir, 2012, 392—410. (in Russian).

42. Zimin A. V. Internal waves on the White Sea shelf according to observations. Oceanology. 2012, 52 (1), 11— 20.

43. Zimin A. V., Rodionov A. A. Mesoscale and fine-structure variability of hydrophysical fields in the tidal cucle on the White Sea shelf. Proceedings of XI all-Russian conference «Advanced technologies of hydroacoustics and hydrophysics». Saint-Petersburg, Nauka, 2012, 16—21. (in Russian).

44. Zimin A. V., Rodionov A. A., Zdorovennov R. E., Romanenkov D. A., Shevchuk O. I., Rodionov M. A., Zhegulin G. V. Research of the Short-Term Variability of Hydrophysical Fields in the White Sea in JulyAugust 2012 Onboard the Research Vessel «Ecology». Fundamentalnaya i prikladnaya gidrofizika. 2012, 5, 3, 85—88. (in Russian).

45. Zimin A. V., Romanenkov D. A., Rodionov A. A., Zhegulin G. V., Rodionov M. A. Field studies of short-term variability of hydrophysical fields of the White Sea in August 2013. Fundamentalnaya i prikladnaya gidrofizika. 2014, 7, 1, 85—92. (in Russian).

46. Zimin A. V. Short-period variability of hydrophysical fields and internal wave characteristics during the semidiurnal tidal cycle on the White Sea shelf. Oceanology. 2013, 53(3), 259—268.

47. Zimin A. V., Rodionov A. A., Zhegulin G. V. Short-Period Internal Waves on the White Sea Shelf: a Comparative Analysis on the Basis of Observations in Different Areas. Fundamentalnaya i prikladnaya gidrofizika. 2013, 6, 3, 19—33. (in Russian).

48. Zimin A. V., Romanenkov D. A., Kozlov I. E., Chapron B., Rodionov A. A., Atadjanova O. A., Myasoedov A. G., Collard F. Short-Period Internal Waves in the White Sea: Operational Remote Sensing Experiment in Summer 2012. Issledovanie Zemli iz Kosmosa. 2014, 3, 41—45. DOI: 10.7868/S0205961414030087. (in Russian).

49. Zhegulin G. V., Zimin A. V. Estimates of horizontal turbulent exchange in the White Sea on the observation data. Proceedings of XI all-Russian conference «Advanced technologies of hydroacoustics and hydrophysics». Saint-Petersburg, Nauka, 2012, 274—277. (in Russian).

50. Zhegulin G. V., Zimin A. V. Characteristics of turbulent processes in the shelf region of the White Sea according to natural supervision. Proceedings of XII all-Russian conference «Advanced technologies of hydroacoustics and hydrophysics». Saint-Petersburg, Nestor-Istoriia, 2014, 212—215. (in Russian).

51. Atatdzhanova O. A., Zhegulin G. V., Zimin A. V., Zubkova E. V., Kozlov I. E., Rodionov A. A., Romanenkov D. A. Space-temporal variability of short-period internal waves on the White Sea. Proceedings of XII allRussian conference «Advanced technologies of hydroacoustics and hydrophysics». Saint-Petersburg, NestorIstoriya, 2014, 36—40. (in Russian).

52. Kozlov I., Romanenkov D., Zimin A., Chapron B. SAR observing large-scale nonlinear internal waves in the White Sea. Remote Sensing of Environment. 2014, 147, 99—107. doi:10.1016/j.rse.2014.02.017.

53. Atatdzhanova O. A., Zimin A. V., Kozlov I. E. Statistical analysis of submesoscale eddies in the White Sea according to satellite SAR imageries. Proceedings of XII all-Russian conference «Advanced technologies of hydroacoustics and hydrophysics». Saint-Petersburg, Nestor-Istoriya, 2014, 215—217. (in Russian).


Review

For citations:


Rodionov A.A., Romanenkov D.A., Zimin A.V., Kozlov I.E., Chapron B. Submesoscale processes and dynamics in the White Sea. State of the art and future research. Fundamental and Applied Hydrophysics. 2014;7(3):29--41. (In Russ.)

Views: 128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)