Few-Parameter Optical Models of Seawater Inherent Optical Properties
Abstract
The paper reviews and analyzes few-parameters optical models of water inherent optical properties (IOPs). These models are classified as correlational and structural models. Correlational models establish relations either between values of a single IOP at different wavelengths (spectral models) or between values of several IOPs at the same wavelength. The correlations between attenuation, scattering and backscattering coefficients at 550 nm were shown to be valid for the majority of open and coastal regions of the World Ocean. In particular, they can be used to compute parameters of under-water imaging systems operating in this spectral range. Correlational models make it possible to determine the values of IOP for the whole visual spectrum on the basis of the value of the attenuation coefficient at 550 nm. The structural models describe IOPs in terms of concentrations of optically active matters (OAM): phytoplankton, sediment and colored dissolved organic matter. We show that these models are very diverse and often mutually contradictory; their domain of application is limited and their accuracy is often unknown. Nevertheless, they make it possible to estimate a range of possible IOP variation for given OAM concentrations.
About the Author
I. M. LevinRussian Federation
Saint-Petersburg
References
1. Dolin L. S., Levin I. M. Theory of underwater vision. Leningrad, Gidrometeoizdat, 1991, 230 p. (in Russian).
2. Ivanov A. P. Physical fundamentals of hydrooptics. Minsk. Nauka i tekhnika, 1975, 503 p. (in Russian).
3. Preizendorfer R. Hydrologic optics. Honolulu: NOAA, 1976, 1750 p.
4. Ivanov A. Introduction to oceanography. Moscow, Mir, 1978, 574 p. (in Russian).
5. Erlov N. G. Optics of the sea. Leningrad, Gidrometeoizdat, 1980, 248 p. (in Russian).
6. Optics of the ocean / Edited by A. S. Monin. Moscow, Nauka, 1983, 605 p. (in Russian).
7. Shifrin K. S. Introduction to the ocean optics. Leningrad, Gidrometeoizdat, 1983, 278 p. (in Russian).
8. Dera J. Marine Physics. Elsevier. Amsterdam, 1992, 516 p.
9. Mobley C. D. Light and Water: Radiative Transfer in Natural Waters. Academic Press. San Diego, 1994. 592 p.
10. Levin I., Radomyslskaya T. Secchi disk theory: a reexamination. In: Current Research on Remote Sensing, laser Probing, and Imagery in Natural Waters / Edited by I. M. Levin., G. D. Gilbert, V. I. Haltrin and C. Trees. Pro- ceeding of SPIE, 2007. V. 6615, 66150O, 11 p.
11. Levin I. M., Radomyslskaya T. M. Estimate of water inherent optical properties from Secchi depth. Izvestiya, Atmospheric and Oceanic Physics, 2012, 48(2), 214—221.
12. Simonot J.-Y., Trout H. A. A climatological field of mean optical properties of the world ocean. J. Geophys. Res., 1986, 91(5), 6642—6652.
13. Mankovskiy V. I., Timofeeva V. A., Shemshura V. E. On relationship between integrated characteristics of light scattering indecatrix of sea and ocean water. Optika morya. Moscow, 1983. 38—44.
14. Kopelevich O. V. Optical properties of sea water. In: Optics of the ocean / Edited by A. S. Monin. Moscow, Nauka, 1983, 1, 150—234.
15. Levin I. M., Kopelevich O. V. Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm. Okeanologiya, 2007, 47 (3), 374—379 (in Russian).
16. Levin I. M., Desa Eh., Desa El., Suresh T., Radomyslskaia T. Can the Secci depth measurements be used for determination of water inherent optical properties? / Proc. of 1 International Conference «Current Problems in Optics of Natural Waters» (ONW'2001), St.-Petersburg: D. S. Rozhdestvensky Optical Society, 2001, 360— 366.
17. Sydor M., Arnone R. A. Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters. Appl. Optics., 1997, 36(27), 6905—6912.
18. Morel A., Prieur L. Analysis of variations in ocean color. Limnol. Oceanogr., 1977, 22(4), 709—722.
19. Shoonmaker J. S., Hammond R. R., Heath A. L., Cleveland J. S. A numerical model for prediction of sublittoral optical visibility / Ocean Optics XII. Bergen: Society of Photo-Optical Instrumentation Engineers, 1994, 2258, 685—702.
20. Levin I., Darecki M., Sagan S., Radomyslskaya T. Relationships between inherent optical properties in the Bal- tic Sea for application to the underwater imaging problem. Oceanologia, 2013, 55(1), 11—26.
21. Smith R. C., Baker K. S. Optical properties of the clearest natural waters (200—800 nm). Applied Optics, 1981., 20(2), 177—184.
22. Petzold T. J. Volume scattering function for selected ocean waters. San Diego: Scripps Inst. of Oceanography, 1972, 79 p.
23. Lee Z., Carder K. L., Mobley C. D., Steward R. G., Patch J. S. Hyperspectral remote sensing for shallow wa- ters: 2. Deriving bottom depths and water properties by optimization. Applied Optics, 1999, 38(18), 3831— 3843.
24. Gordon H. R. Dependence of the diffuse reflectance of natural waters on the sun angle. Limnol. Oceanogr., 1989, 34(8), 1484—1489.
25. Gould R. W., Arnone R. A., Martinolich P. M. Spectral dependence of the scattering coefficient in case 1 and 2 waters. Applied Optics, 1999, 38(12), 2377—2383.
26. Kirk J. T. O. Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnol. Oceanogr., 1984, 29, 350—356.
27. Sathyendranath Sh., Platt T. Analytic model of ocean color. Applied Optics, 1997, 36(12), 2620—2629.
28. Morel A., Antoine D., Gentilu B. Biderectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase. Applied Optics, 2002, 41(30), 6289—6306.
29. Morel A., Maritorena S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 2001, 106(C4), 7163—7180.
30. Wozniak B., Dera J., Koblentz-Mishke O. J. Bio-optical relationships for estimating при mary production in the Ocean. Oceanologia, 1992, 33, 5—38.
31. Kopelevich O. V. Low-parametric model of the optical properties of seawater. In: Optics of the ocean / Edited by A. S. Monin. Moscow, Nauka, 1983, 1, 208—234. (in Russian).
32. Kopelevich O. V. The current low-parametric models of seawater optical properties / Proc. of the I International Conference «Current Problems in Optics of Natural Waters» (ONW'2001), St. Petersburg: D. S. Rozhdestvensky Optical Society, 2001, 18—23.
33. Voss K. J. A spectral model of the beam attenuation coefficient in the ocean and coastal areas. Limnol. Ocea- nogr., 1992, 37(3), 501—509.
34. Pope R. M., Fry E. S. Absorption spectrum (380—700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 1997, 36(33), 8710—8723.
35. Barnard A. H., Pegau W. S., Zaneveld J. R. V. Global relationships of the inherent optical properties of the oceans. J. Geophys. Res., 1998, 103(C11), 24,955—24,968.
36. Prieur L., Sathyendranath S. An optical classification of coastal and oceanic waters based on the specific spec- tral absorption of phytoplankton pigments, dissolved organic matter and other particulate materials. Limnol. and Oceanogr., 1981, 26(4), 671—689.
37. Sathyendranath S., Prieur L., Morel A. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. International J. of Remote Sensing, 1989, 10(8), 1373— 1394.
38. Bricaud A., Babin M., Morel A., Claustre H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. of Geophysical Research, 1995, 100(C7), 13,321- 13,332.
39. Bricaud A., Morel A., Babin M., Allaly K., Claustre H. Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1 waters): analysis and implications for bio-optical models. J. of Geophysical Research, 1998, 103(C13), 31,033—31,044.
40. Levin I., Darecki. M., Sagan S., Kowalczuk P., Zdun A., Radomyslskaya T., Rodionov M. Can the Known Mod- els of Seawater Optical Properties Be Applied to the Baltic Sea? Fundam. i prikl. gidrofiz., 2012, 5(4), 80—87. (in Russian).
41. Babin M, Stramski D., Ferrari G., Claustre H., Bricaud A., Obolensky G., Hoepffner N. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 2003, 108(C7), P. 3211.
42. Morel A., Loisel H. Apparent optical properties of oceanic water: dependence on the molecular scattering con- tribution. Applied Optics, 1998, 37(21), 4765—4776.
43. Gordon H. R., Morel A. Remote assessment of ocean color for interpretation of satellite visible imagery: A re- view (Springer-Verlag), 1983.
44. Gordon H. R., Brown O. B., Evans R. H., Brown J. W., Smith R. C., Baker K. S., Clark D. K. A semianalytic radiance model of ocean color. J. of Geophysical Research, 1988, 93(D2), 10,909—10,924.
45. Loisel H., Morel A. Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnolo- gy and Oceanography, 1998, 43(5), 847—858.
46. Morel A. Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? J. of Geophysical Research, 2009, 114(C01016).
47. Sathyendranath S., Cota G., Stuart V., Maass H., Platt T. Remote sensing of phytoplankton pigments: a com- parison of empirical and theoretical approaches. International Journal of Remote Sensing, 2001, 22(2, 3), 249—273.
48. Haltrin V. Chlorophyll-based model on seawater optical properties. Applied Optics, 1999, 38(33), 6826—6832.
49. Levin I. M., Levina E. I. Effect of atmospheric interference and sensor noise in retrieval of optically active ma- terials in the ocean by hyperspectral remote sensing. Applied Optics, 2007, 46(28), 6896—6906.
50. Levin I. M., Levina E. I. Errors in the retrieval of oceanic concentrations of optically active materials from mul- tispectral sensor signals by observations through atmospheric layer. Izvestiya, Atmospheric and Oceanic Phys- ics, 2012, 48(5), 608—616.
Review
For citations:
Levin I.M. Few-Parameter Optical Models of Seawater Inherent Optical Properties. Fundamental and Applied Hydrophysics. 2014;7(3):3-22. (In Russ.)