Interannual Water Quality Variations in Lake Ladoga in Spring During 2016 and 2017: Satellite Observations
https://doi.org/10.7868/S2073667321010081
Abstract
Reported and analyzed the results of satellite observations of Lake Ladoga water quality parameters (WQPs) primarily in spring 2016 and 2017. Our retrievals indicate that even in March, soon after the inception of ice cover melting, the concentration of chlorophyll a (Cchl) is non-zero (but yet very low) not only in the lateral but also pelagic waters of the lake. Arguably, the non-zero chl concentrations arise from the phytoplankton that vegetated under ice and then moved up to the surface as the ice sheets began melting. Spring-time concentrations of inorganic suspended matter (Csm) are year-specific and range between 0.1 and 3.5 mg/l with the elevated values inherent in lateral waters, especially in the vicinity of river outflows. Similar spatial patterns are found for the distributions of colored dissolved organic matter concentrations (Cdom). The lowest values of Cdom (<4.5 mgC/l) occurred in the pelagic waters, whereas the highest ones (12–15 mgC/l) resided in the lateral zone, in particular, within/adjacent to the Volkhovskaya Gouba. With the beginning of summer, the above concentrations, Cchl, Csm, and Cdom, start growing, remaining however less than they are in July.
Keywords
About the Authors
D. V. PozdnyakovRussian Federation
199034, Vasilievsky Island, 14th Line, 7, St. Petersburg
N. N. Filatov
Russian Federation
185030, Aleksander Nevsky st., 50, Petrozavodsk
References
1. Dekker A.G., Malthus T.J., Hoogenboom H.J. The remote sensing of inland water quality. Advances in Environmental Remote Sensing / Eds: F.M. Danson and S.E. Plummer. John Wileyand Sons, Chichester, United Kingdom. 1995, 123– 142.
2. Eremeeva А.О. Issues of remote sensing of surface water quality. Trudy Gosudarstvennogo Gidrologicheskogo Instituta. 1983, 297, 122–129 (in Russian).
3. Kondratyev K. Ya., Pozdnyakov D.V. The quality of natural waters and its determining components. L., Nauka, 1984. 54 p. (in Russian).
4. Bukata R.P., Jerome J.H., Kondratyev K. Ya., Pozdnyakov D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters. Boca Raton e. a., CRC Press, 1995. 362 p.
5. Sathyendranath S. (Ed). Remote Sensing of Ocean Colour in Coastal, and Other optically-complex Waters. IOCCG Report. 2002, 3, 104 p.
6. Pozdnyakov D., Grassl H. Colour of Inland and Coastal Waters: A Methodology of its Interpretation. Chichester, SpringerPraxis, 2003. 170 p.
7. Pozdnyakov D., Korosov A., Petrova N., Grassl H. Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status. J. Great Lakes Res. 2013, 3, 34–45.
8. Mobley C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 36, 7442–7455.
9. Kondrik D.V., Pozdnyakov D.V., Pettersson L.H. Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: a satellite time series study (1998–2013). Int. J. Rem. Sens. 2017, 38, 22, 6179–6205. doi: 10.1080/01431161.2017.1350304
10. Jerome J.H., Bukata R.P., Miller J.R. Remote sensing reflectance and its relationship to optical properties of natural water. Int. J. Rem. Sens. 1996, 17, 1, 43–52.
11. Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 1944, 2, 164–168.
12. Marquardt D.W. An algorithm for least-squares estimation of non-linear parameters. J. Int. Soc. Appl. Math. 1963, 11, 2, 36–48.
13. Sokoletsky L.G., Lunetta R.S., Wetz M.S., Paerl H.W. Assessment of the water quality components in turbid estuarine waters based on radiative transfer approximations. Israel J. Plant Sci. 2012, 60, 1–2, 209–229.
14. Shuchman R., Korosov A., Hatt C., Pozdnyakov D., Means J., Meadows G. Verification and application of a Bio-optical Algorithm for Lake Michigan Using SeaWiFS: a 7-year Inter-annual Analysis. J. Great Lakes Res. 2006, 32, 258–279.
15. Pozdnyakov D.V., Johannessen O.M., Korosov A.A., Pettersson L.H., Grassl H.G., Miles M.W. Satellite evidence of ecosystem changes in the White Sea: A semi-enclosed arctic marginal shelf sea. Geophys. Res. Lett. 2007, 34, 8, L08604. doi: 10.1029/2006GL028947
16. Petrenko D., Pozdnyakov D., Johannessen J., Counillon F., Sychov, V. Satellite-derived multi-year trend in primary production in the Arctic Ocean. Int. J. Rem. Sens. 2013, 34, 11, 3903–3937. doi: 10.1080/01431161.2012.762698
17. Kondrik D.V., Pozdnyakov D.V., Pettersson L.H. Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: a satellite time series study (1998–2013). Int. J. Rem. Sens. 2017, 38, 22, 6179–6205. doi: 10.1080/01431161.2017.1350304
18. Istomina L., Heygster H., Kazev I. Melt pond fraction and spectral sea ice albedo retrievals from MERIS data. Part I: Validation against in situ, aerial, and ship cruise data. The Cryosphere. 2015, 9, 1551–1566. doi: 10.5194/tc-9–1551–2015
19. Lei R., Zhang Z., Matero I., Cheng B., Li Q., Huang W. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Res. 2012, 31, 17325. doi: 10.3402/polar.v31i0.17325
20. Rukhovets L., Filatov N. (Eds). Ladoga and Onego — Great European lakes. Observations and Modelling. Springer, Berlin, Heidelberg, 2010. 302 p.
21. Arrigo K.G., Perovich D.K., Pickart R.S. et al. Massive phytoplankton blooms under Arctic sea ice. Sci. 2012, 336, 6087, 1408–1409.
22. Eisma D. Suspended matter in the Aquatic Environment. Springer, Berlin, Heidelberg, 2012. 303 p. doi: 10.1007/978–3–642–77722–6
23. Petrova N., Terzhevik A. (Eds). Lake Ladoga: criteria of the ecosystem state. St. Petersburg, Nauka, 1992. 322 p. (in Russian).
24. Pozdnyakov D., Korosov A., Grassl H., Pettersson L. An advanced algorithm for operational retrieval of water quality from satellite data in the visible. Int. J. Rem. Sens. 2005, 26, 12, 2669–2687. doi: 10.1080/01431160500044697
Review
For citations:
Pozdnyakov D.V., Filatov N.N. Interannual Water Quality Variations in Lake Ladoga in Spring During 2016 and 2017: Satellite Observations. Fundamental and Applied Hydrophysics. 2021;14(1):79-85. https://doi.org/10.7868/S2073667321010081