Preview

Fundamental and Applied Hydrophysics

Advanced search

Statistics of Extreme Wind Waves

Abstract

This paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme («freak») waves. The method of solution of 2-D potential wave’s equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. There are no predictors for appearance of extreme waves, however, a height of dimensional waves is proportional to a significant wave height. The initial generation of extreme waves can occur simply as a result of group effects, but in some cases the largest wave suddenly starts to grow. It is followed sometimes by a strong concentration of wave energy around a peak vertical. It is taking place throughout several peak wave periods. It happens to an individual wave in a physical space, no energy exchange with surrounding waves taking place. Probability function for steep waves has been constructed. Such a function can be used for development of operational forecast of freak waves based on a standard forecast.

About the Author

D. V. Chalikov
Shirshov Institute of Oceanology of Russian Academy of Sciences
Russian Federation

St. Petersburg branch



References

1. Kharif C., Pelinovsky D. Physical mechanisms of the rogue wave phenomenon // European Journal of Mechanics B/Fluids. 2003. 22. Р.603–634.

2. Dysthe K., Krogstad H., Muller P. Oceanic Rogue Waves // Annual Review Fluid Mechanics. 2008. 40. Р.287-310.

3. Rogue waves. Proceedings of a Workshop. Brest, France. 2000, 2004, 2008.

4. Janssen P. Nonlinear four-wave interaction and freak waves // J. Phys. Oceanogr. 2003. 33. Р.2001-2018.

5. Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of deep fluid // J. Appl. Math. Techn.Phys.. 1968. 9. Р.190-194.

6. Homer (750BC-650BC), Iliad. The Project Gutenberg Etext of The Iliad, by Homer translated by Samuel Butler. 2000.

7. Benjamin T.B., Feir J.E. The disintegration of wave trains in deep water // J. Fluid. Mech. 1967. 27. Р.417430.

8. Henderson D., Peregrine D.H., Dold J.W. Unsteady water waves modulations: fully nonlinear solutions and comparison with the nonlinear Shroedinger equation // Wave Motion. 1999. 29. Р.341-361.

9. Dysthe K.B., Trulsen K. Note on breather type solutions of the NLS as a model for freak-waves // Phys. Scripta 1999. T8248–52.

10. Osborne A.R., Onorato M., Serio M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave train // Phys. Lett. 2000. A 275. Р.386–39.

11. Onorato M., Osborne A.R., Serio M., Damiani T. Occurrence of freak waves from envelope equations in random ocean wave simulations, in: M.Olagnon, G.A.Athanassoulis (Eds.). Rogue Waves 2000 (Brest, France, 2000). 2001. Ifremer. Р.181–191.

12. Slunyaev A., Kharif C., Pelinovsky E., Talipova T. Nonlinear wave focusing on water of finite depth // Physica D. 2002. 173 (1–2). Р.77–96.

13. Chalikov D., Sheinin D. Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface // Journ. Comp. Phys. 2005. 210. Р.247-273.

14. Babanin A., Chalikov D., Young I. and Savelyev I. Predicting the breaking onset of surface water waves // Geophys. Res. Lett. 2007. 34. L07605. 1029/2006GL029135.

15. Dysthe K.B., Trulsen K., () Note on breather type solutions of the NLS as a model for freak-waves // Phys. Scripta. 1999. T8248–52.

16. Dold J.W., Peregrine D.H. A efficient boundary-integral method for steep unsteady water waves. In: Numerical Methods for Fluid Dynamics (ed. K.W.Morton and M.J.Baines). Oxford University Press. 1986.

17. Dold J.W. An Efficient Surface-Integral Algorithm Applied to Unsteady Gravity Waves // Journal of Comp. Phys. 1992. 103. Р.90–115.

18. Chalikov D., Sheinin D. Numerical modeling of surface waves based on principal equations of potential wave dynamics. Techn. Note. NOAA/NCEP/OMB. 1996. 54 pp.

19. Chalikov D., Sheinin D. Direct Modeling of One-dimensional Nonlinear Potential Waves. Nonlinear Ocean Waves, ed. W.Perrie. Advances in Fluid Mechanics. 1998. 17. Р.207-258.

20. Bateman W.J.D., Swan C., Taylor P.H. On the efficient numerical simulation of directionally spread surface water waves // J. Comput. Phys. 2001. 174. Р.277–305.

21. Glamond D. and Grue J. A fast method for fully nonlinear water wave computations // J. Fluid. Mech. 2001. 447. Р.337-355.

22. Chalikov D. Statistical properties of nonlinear one-dimensional wave fields // Nonlinear processes in geophysics. 2005. 12. Р.1-19.

23. Chalikov D. Numerical simulation of Benjamin-Feir instability and its consequences // Phys. Fluids. 2007. 19.

24. Tsai W.T., Yue D.K.P. Computation of nonlinear free-surface flows // Annu. Rev. Fluid Mech. 1996. 28. Р.249-278.

25. Song J.-B., Banner M.L. On determining the onset and strength of breaking for deep water waves. Part I.: Unforced irrotational wave groups // J. Phys. Oceanogr. 2002. 32. Р.2541-2558.

26. Crapper G.D. An exact solution for progressive capillary waves of arbitrary amplitude // Journal of Fluid Mech. 1957. 96. Р.417-445.

27. Crapper G.D. Introduction to Water Waves. John Wiley, Chichester. 1984. 224 pp.

28. Stokes G.G. On the theory of oscillatory waves // Trans. Cambridge Philos. Soc., 8, 441-445;. Math. Phys. Pap. 1847. 1. Р.197–229.

29. Whitney J.C. The numerical solution of unsteady free-surface flows by conformal mapping. In: Proc. Second Inter. Conf. on Numer // Fluid Dynamics (ed. M.Holt), Springer-Verlag. 1971. Р.458-462.

30. Овсянников Л.В. К обоснованию теории мелкой воды. Динамика сплошной среды. Сиб. отд. Ин-т гидродинамики АН СССР. Новосибирск. 1973. Вып.15. Р.104-125.

31. Ovsyannikov L.V. To the shallow water theory foundation // Archives of Mechanics. 1974. 26. No.3. Р.407422.

32. Kano T., Nishida T. Sur le ondes de surface de l’eau avec une justification mathematique des equations des ondes en eau peu profonde. J. Math. Kyoto Univ. (JMKYAZ). 1979. 19-2. Р.335-370.

33. Fornberg B. A numerical method for conformal mapping SIAM, J. Sci. Comput. 1980. 1. Р.386-400.

34. Tanveer S. Singularities in water waves and Rayleigh-Taylor instability // Proc. R.Soc. Lond. 1991. A435. Р.137-158.

35. Tanveer S. Singularities in the classical Rayleigh-Taylor flow: formation and subsequent motion // Proc. R. Soc. Lond. 1993. A441, Р.501-525.

36. Sheinin D., Chalikov D. Hydrodynamical modeling of potential surface waves. In: Problems of hydrometeorology and environment on the eve of XXI century. Proceedings of international theoretical conference, St.Petersburg, June 24-25 1999. St.-Petersburg, Hydrometeoizdat. 2001. Р.305-337.

37. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface // European Journ. of Mech. B/Fluids. 2002. 21. Р.283-291.

38. McLean, J.W. Instabilities of finite-amplitude water waves // J. Fluid Mech. 1982. 114. Р.315-330.

39. Longuet-Higgins M.S., Tanaka M. On the crest instabilities of steep surface waves // J. Fluid. Mech. 1997. 336. Р.51-68.

40. Onorato M., Osborn A.R., Resio M. Оbservations of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments // Phys. Rev. 2004. 70. 067302.

41. Tolman H., Chalikov D. On the source terms in a third-generation wind wave model // Journ Phys. Oceanogr. 1996. No.11.


Review

For citations:


Chalikov D.V. Statistics of Extreme Wind Waves. Fundamental and Applied Hydrophysics. 2009;(3):4-24. (In Russ.)

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)