Assessment of influence of Marenzelleria Arctia bioturbation activity on substances content in the sediments of the Eastern Gulf of Finland
Abstract
Benthic organisms can significantly influence the geochemical processes in the sediments by digging burrows and tunnels, which are then destroyed or backfilled, by absorption and excretion of sediments, plowing of surface soil etc. This work is dedicated to assessment of influence of invasive polychaetes Marenzelleria arctia activity on organic carbon content, total contents of iron and manganese in the solid phase of bottom sediments in the Eastern part of the Gulf of Finland. The content of chemical compounds in the sediments, abundance and biomass of polychaetes were obtained during the research cruise of RSHU in July 2016. Statistical analysis of field data allowed to reveal the peculiarities in distribution of chemicals depending on polychaetes population. Stations with higher polychaetes density were found to correspond to the lower content of organic matter, iron and manganese in the solid phase of sediments. In contrast, at stations with low Marenzelleria population the contents of these substances are higher. It can be concluded that bioturbation activity of polychaetes increases organic matter mineralization and reduces its burial, and also, probably, contributes to a more intensive consumption of Fe and Mn oxides/hydroxides in organic matter oxidation.
About the Authors
E. V. VoloshchukRussian Federation
A. A. Maximov
Russian Federation
References
1. Jahnke R., Richards M., Nelson J. et al. Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Cont. Shelf Res. 2005, 25, 1433—1452.
2. Jørgensen B. B., Boudreau B. P. Diagenesis and sediment–water exchange. In: Boudreau B. P., Jørgensen B. B. (eds) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford, 2001. P. 211—244.
3. Welsh D. T. It’s a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem Ecol. 2003, 19, 321—342.
4. Aller R. C. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chemical geology. 1994, 114, 331—345.
5. Norkko J., Reed D. C., Timmermann K. et al. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology. 2012, 18, 2, 422—434.
6. Sandnes J., Forbes T., Hansen R., Sandnes B., Rygg B. Bioturbation and irrigation in natural sediments, described by animalcommunity parameters. Mar. Ecol. Prog. Ser. 2000, 169—179.
7. Boudreau B. P. Diagenetic models and their implementation: modeling transport and reactions in aquatic sediments / Bernard P. Boudreau. Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer, 1996.
8. Herman P.M.J., Middelburg J.J., Van de Koppel J., Heip C.H.R. Ecology of estuarine macrobenthos. Adv. in Ecol. Res. 1999, 29, 195—240.
9. Karlson K., Hulth S., Ringdahl K., Rosenberg R. Experimental recolonisation of Baltic sea reduced sediments: survival of benthic macrofauna and effects on nutrient cycling. Mar. Ecol. Prog. Ser. 2005, 294, 35—49.
10. Van der Bund W. J., Olafsson E., Modig H., Elmgren R. Effects of the coexisting Baltic amphipods Monoporeia affinis and Pontoporeia femorata on the fate of a simulated spring diatom bloom. Mar. Ecol. Prog. Ser. 2001, 212, 107—115.
11. Ferro I., Van Nugteren P., Middelburg J. J., Herman P.M.J., Heip C.H.R. Effect of macrofauna, sediment ventilation and particle reworking on sedimentary iron and manganese pools in a mesocosm experiment. Vie et Milieu. 2003, 53, 211—220.
12. Eremina T. R., Voloshchuk A. A., Maximov A. A. Assessment of biogeochemical changes in the sediments of the Eastern part of the Gulf of Finland due to invasion of polychaetes Marenzelleria spp. on observational data and modeling results. Izvestiya RGO. 2016, 148, 1, 55—71 (in Russian).
13. Maximov A. A., Eremina T. R., Lange E. K., Litvinchuk L. F., Maximova O. B. Regime shift in ecosystem of the Eastern Gulf of Finland due to invasion of polychaetes Marenzelleria arctia. Oceanology. 2014, 54, 1, 52—59.
14. Voloshchuk E. V., Eremina T. R., Ryabchenko V. A. Modeling of biogeochemical processes in the sediments of the Eastern part of the Gulf of Finland by means of diagenetic model. Fundam. Prikl. Gidrofiz. 2015, 8, 4, 106—113 (in Russian).
15. Urban-Malinga B., Warzocha J., Zalewski M. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brakish system. J. of Sea research. 2013, 80, 25—34.
16. Hietanen S., Laine A. O., Lukkari K. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. J. of Exper. Mar. Biol. and Ecol. 2007, 352, 89—102.
17. Maximov A., Bonsdorff E., Eremina T. et al. Context-dependent consequences of Marenzelleria spp. (Spionidae: Polychaeta) invasion for nutrient cycling in the Northern Baltic Sea. Oceanologia. 2015, 57, 342—348.
18. Voloshchuk E., Eremina T., Isaev A. Assessment of bioturbation activity of Marenzelleria spp. in the eastern Gulf of Finland. Abstract book of the EMECS'11 SeaCoasts XXVI conference: Managing risks to coastal regions and communities in a changing world. August 22—27 2016, Saint-Petersburg, Russia. P. 69.
19. Canfield D. E., Thamdrup B., Hansen W. The anaerobic degradation of organic-matter in Danish coastal sediments — iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta. 1993, 57, 3867—3883.
20. Millero F. J., Sotolongo S., Izaguirre M. The kinetics of oxidation of Fe(II) in seawater. Geochim. Cosmochim. Acta. 1987, 51, 793—801.
21. Fokin D. P., Frumin G. T. Content and distribution of metals in sediments of the Eastern Part of the Gulf of Finland (according to the Federal monitoring 2001—2009). Obshchestvo. Sreda. Razvitie. 2011, 1, 210—214 (in Russian).
22. Gordeeva S. M. Practicum on «Statistical methods of processing and analysis of hydrometeorological information». SPb., RGGMU, 2010. 74 p. (in Russian).
23. Pitkänen H. Nutrient dynamics and conditions in the eastern Gulf of Finland: the regulatory role of the Neva estuary. Aqua Fennica. N 21 (2). 1991. P. 105—115.
24. Maximov A. A. The long term dynamics and current distribution of macrozoobenthos communities in the Eastern Gulf of Finland, Baltic Sea. Russian Journal of Marine Biology. 2015, 41, 4, 300—310.
25. Maximov A., Nygård H., Kotta I. Benthic communities. Deep bottoms. The Gulf of Finland assessment. Reports of the Finnish Environment Institute. 2016, 27, 204—207.
26. Alferovskaya M. M. Chemical composition of Gulf of Finland sediments. Izhv. GosNIORH. 1969, 65, 321—327 (in Russian).
27. Maximov A. A. The role of Monoporeia affinis (Lindstrom) (Crustacea; Amphipoda) in bottom communities of the Eastern part of the Gulf of Finland. Dissertation of candidate of biological sciences. SPb, Zoologicheskiy institute RAN, 2000 (in Russian).
Review
For citations:
Voloshchuk E.V., Maximov A.A. Assessment of influence of Marenzelleria Arctia bioturbation activity on substances content in the sediments of the Eastern Gulf of Finland. Fundamental and Applied Hydrophysics. 2017;10(2):34-40.