Preview

Fundamental and Applied Hydrophysics

Advanced search

A comparison of the spatial distributions of baroclinic tidal energy dissipation and diapycnal diffusivity in the Barents and Kara Seas in an effort to estimate tidal changes in regional climates of marine systems

Abstract

A solution of equations of the 3D finite-element hydrostatic model QUODDY-4 shows that the fields of the averaged (over a tidal cycle) depth-integrated baroclinic tidal energy dissipation and the depth-averaged diapycnal diffusivity will differ in the Barents and Kara Seas both qualitatively and quantitatively. So, if in the Barents Sea the above distributions are a maximum in the southern regions and a minimum to the west from the Novaya Zemlya islands, then in the Kara Sea maximum values fall on the Central plato and also on Baydaratskii, Obskii, Gydanskii and Eniseyskii bays, whereas minimum values are detected in discrete spots, scattered basically in the north-eastern part of the sea only. The fields of the diapycnal diffusivity in these seas bear a general resemblance to those for dissipation, their values in the Kara Sea being an order of magnitude less than in the Barents Sea. This fact is explained by an increase in the buoyancy frequency squared in the Kara Sea as compared with the Barents Sea. Then, allowing for the approximation of «weak interaction» and comparing values of vertical eddy diffusivities, found without considering tidal forcing, and the diapycnal diffusivities, we ensure that the influence of tidally induced diapycnal diffusion must affect the climate of the Barents Sea and must not be essentially pronounced in the near-estuary regions of the Kara Sea.

About the Authors

B. А. Kagan
Санкт-Петербургский филиал Института океанологии им. П. П. Ширшова РАН
Russian Federation


E. V. Sofina
Санкт-Петербургский филиал Института океанологии им. П. П. Ширшова РАН; Российский государственный гидрометеорологический университет
Russian Federation


A. A. Timofeev
Санкт-Петербургский филиал Института океанологии им. П. П. Ширшова РАН
Russian Federation


References

1. Kagan B. A., Sofina E. V. Surface and internal semidiurnal tides and tidally induced diapycnal diffusion in the Barents Sea: a numerical study. Cont. Shelf Res. 2014, 91, 158—170. doi: 10.1016/j.csr.2014.09.010.

2. Kagan B. A., Timofeev A. A. Modeling of the surface and internal semidiurnal tides in the Kara Sea. Izvestiya, Atmospheric and Oceanic Physics. 2017, 53, 2. doi: 10.7868/S0002351517020055.

3. Gjevik B., Straume T. Model simulation of the M2 and K1 tides in the Nordic Seas and the Arctic Ocean. Tellus. 1989, 41A, 7, 73—96.

4. Ip J.T.C., Lynch D. R. QUODDY-3 User’s Manual: Comprehensive coastal circulation simulation using finite elements. Nonlinear prognostic time-stepping model. Thayler School of Engineering. Dartmouth College. Report Number NML 95-1. Hanover, New Hampshire, 1995. 45 p.

5. Lynch D. R., Gray W. G. A wave equation model for finite element tidal computations. Computers and Fluids. 1979, 7, 3, 207—228.

6. Padman L., Erofeeva S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Let. 2004, 31, 2. doi: 10.1029/2003GL019003.

7. Tanis E., Timokhov L. (eds.) Joint US-Russian Atlas of the Arctic Ocean, Oceanography Atlas for the Summer Period. Environmental Working Group, University of Colorado, Media Digital, 1998.

8. Smagorinsky J. General circulation experiments with the primitive equations. Month. Weather Rev. 1963, 91, 3, 99—164.

9. Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 4, 854—875.

10. Osborn T. R. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 1980, 10, 1, 83—89.

11. Oakey N. S. Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements. J. Phys. Oceanogr. 1982, 12, 3, 256—271.

12. Peters H., Bokhorst R. Microstructure Observations of Turbulent Mixing in a Partially Mixed Estuary. Part II: Salt Flux and Stress. J. Phys. Oceanogr. 2001, 31, 4, 1105—1119.

13. Zaslavsky G. M., Sagdeev R. Z. Introduction to nonlinear physics. М., Nauka, 1988. 368 p. (in Russian).

14. Kagan B. A., Sofina E. V. A Method to Account for Tidal Changes in Regional Climates of a Water Basin under Conditions of an Ice-Free Barents Sea. Oceanology. 2017, 57, 2. doi: 10.7868/S0030157416060046.


Review

For citations:


Kagan B.А., Sofina E.V., Timofeev A.A. A comparison of the spatial distributions of baroclinic tidal energy dissipation and diapycnal diffusivity in the Barents and Kara Seas in an effort to estimate tidal changes in regional climates of marine systems. Fundamental and Applied Hydrophysics. 2017;10(2):5-12. (In Russ.)

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)