Preview

Fundamental and Applied Hydrophysics

Advanced search

Model estimates of the ecosystem contribution in the carbon dioxide exchange between the ocean and the atmosphere in the Barents Sea

Abstract

A three-dimensional mathematical ecosystem model has been combined with a circulation and a sea-ice models of the Barents Sea. The ecosystem model describes the interaction of phytoplankton, zooplankton, dissolved inorganic nitrogen, total inorganic carbon, alkalinity, organic and inorganic parts of detritus. The paper presents the results of calculations of the chlorophyll-a concentration in the period of maximum spring phytoplankton bloom in the Barents Sea, as well as the results of calculations of CO2 flux between the atmosphere and the sea under various conditions. The correspondence between the zones of the intensive growth of phytoplankton during the bloom period and the position of the Polar Front has been demonstrated. The estimation of the ocean-atmosphere CO2 exchange intensity in the presence and absence of the biological CO2 pump has been carried out. For the case without taking into account the oceanic biological uptake of atmospheric carbon dioxide it was found that the maximum values of CO2 flux can be observed in the areas of the ice edge. Taking into account the oceanic biological uptake of atmospheric CO2 leads to the spatial correspondence of the zones of maximal CO2 flux from the atmosphere and the zones of high primary production in the ocean surface layer. The results of the present study show that the spatial variability of the carbon dioxide flux from the atmosphere to the ocean is determined by the spatial variability of the primary production to a much greater extent than by the variations in the sea surface temperature.

About the Authors

S. D. Martyanov
The Saint-Petersburg Branch of the P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation


A. Yu. Dvornikov
The Saint-Petersburg Branch of the P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation


V. A. Gorchakov
The Saint-Petersburg Branch of the P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation


S. N. Losa
The Saint-Petersburg Branch of the P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
Russian Federation


References

1. Карлин Л. Н., Малинин В. Н., Гордеева С. М. О влиянии температуры поверхности океана на обмен углекислым газом с атмосферой // Океанология. 2015. Т. 5, № 1. С. 16—25.

2. Yakushev E. V., Mikhailovsky G. E. Mathematical modelling of the influence of marine biota on the carbon dioxide oceanatmosphere exchange in high latitudes // Air-Water Gas Transfer, selected papers from the Third International Symposium on Air-Water Gas Transfer, July 24—27, Heidelberg University / Ed. by B. Jaehne and E. C. Monahan, AEON Verlag & Studio, Hanau 1995, p. 37—48.

3. Popova E. E., Ryabchenko V. A., Fasham M. J. R. Biological pump and vertical mixing in the Southern ocean: Their impact on atmospheric CO2 // Global Biogeochemical Cycles. 2000. 14 (1). P. 477—498.

4. Popova E. E., Yool A., Aksenov Y., Coward A. C., Anderson T. R. Regional variability of acidification in the Arctic: a sea of contrasts // Biogeosciences. 2014. 11. P. 293—308.

5. Blumberg A. F., Mellor G. L. A description of a three-dimensional coastal ocean circulation model // Three-dimensional Coastal Ocean Models. American Geophysical Union / Ed. N. Heaps. 1987. 208 p.

6. Mellor G. L. Users guide for a three-dimensional, primitive equation numerical ocean model // Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ. 2004. 56 p.

7. Haapala J., Lonnroth N., Stossel A. A numerical study of open water formation in sea ice // Journal of Geophysical Research. 2005. 110. C09011. doi:10.1029/2003JC002200.

8. Рябченко В. А., Горчаков В. А., Дворников А. Ю., Пугалова С. С. Оценки влияния ледового покрова на первичную продукцию фитопланктона в Баренцевом море (по результатам трехмерного моделирования) // Фундаментальная и прикладная гидрофизика. 2016. Т. 9, № 1. С. 41—51.

9. Sein D. V., Mikolajewicz U., Groger M., Fast I., Cabos W., Pinto J. G., Hagemann S., Semmler T., Izquierdo A., Jacob D. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation // J. Adv. Model. Earth Syst. 2015. 7. P. 268—304.

10. Parkinson C. L., Washington W. M. A large-scale numerical model of sea ice // Journal of Geophysical Research. 1979. 84 (C1). P. 311—337.

11. Heinze C., Maier-Reimer E., Winn K. Glacial pCO2 reduction by the world ocean: experiments with the Hamburg carbon cycle mode // Paleoceanography. 1991. 6 (4). P. 395—430.

12. Eppley R. W. Temperature and phytoplankton growth in the sea // Fishery Bulletin. 1972. V. 70, N. 4. P. 1063—1085.

13. Laufkotter C., Vogt M., Gruber N., Aita-Noguchi M., Aumont O., Bopp L., Buitenhuis E., Doney S. C., Dunne J., Hashioka T., Hauck J., Hirata T., John J., Le Quere C., Lima I. D., Nakano H., Seferian R., Totterdell I., Vichi M., Volker C. Drivers and uncertainties of future global marine primary production in marine ecosystem models // Biogeosciences. 2015. 12. P. 6955—6984. doi:10.5194/bg-12-6955-2015.

14. Ocean Color Web. [Электронный ресурс] URL: http://oceancolor.gsfc.nasa.gov/cgi/l3 (Дата обращения: 02.09.2015).

15. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2. [Электронный ресурс]. URL: http://nsidc.org/data/G02202 (Дата обращения: 02.09.2015).

16. Ocean productivity. [Электронный ресурс]. URL: http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.chl.seawifs.php (Дата обращения: 30.11.2016).

17. Engelsen O., Hegseth E. N., Hop H., Hansen E., Falk-Petersen S. Spatial variability of chlorophyll-a in the Marginal Ice Zone of the Barents Sea, with relation to sea ice and oceanographic conditions // Journal of Marine Systems. 2002. 35. P. 79—97.

18. Kushnir V., Pavlov V., Morozov A., Pavlova O. «Flashes» of Chlorophyll-a Concentration Derived from in situ and Remote Sensing Data at the Polar Front in the Barents Sea // The Open Oceanography Journal. 2011. 5. P. 14—21.

19. Qu B., Gabric A. J., Matrai P. A. The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea // Polar Biology. 2006. 29. P. 196—210.

20. Omar A. M., Johannessen T., Olsen A., Kaltin S., Rey F. Seasonal and interannual variability of the air-sea CO2 flux in the Atlantic sector of the Barents Sea // Marine Chemistry. 2007. 104. P. 203—213.

21. Lauvset S. K., Chierici M., Counillon F., Omar A., Nondal G., Johannessen T., Olsen A. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea // Journal of Marine Systems. 2013. 113—114. P. 62—74.

22. [Электронный ресурс] URL: http://mitgcm.org (Дата обращения: 05.12.2016).


Review

For citations:


Martyanov S.D., Dvornikov A.Yu., Gorchakov V.A., Losa S.N. Model estimates of the ecosystem contribution in the carbon dioxide exchange between the ocean and the atmosphere in the Barents Sea. Fundamental and Applied Hydrophysics. 2017;10(1):11-16.

Views: 79


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)