Preview

Fundamental and Applied Hydrophysics

Advanced search

Results of verification of the numerical method for calculation of hydrodynamic and hydroacoustic charachteristics of the fin propulsor

Abstract

This work employs numerical methods of viscous fluid dynamics for determination of hydrodynamic and hydroacoustic characteristics of the oscillating wing as the major structural element of the fin propulsor. Verification of the calculation methods with subsequent analysis of the fin propulsors of more complex designs was carried out by means of comparison of numerical results against respective analytical solutions and experimental data. Hydrodynamic characteristics were determined based on the numerical solution of the Reynolds-averaged Navier—Stokes equations supplemented by the realizable model of turbulence. Rotation of the wing in the water flow was ensured by the mechanism of «sliding computation meshes» implemented in many computing software packages of mechanics of fluids and gases. Hybrid approach to mathematical modelling was described to assess the noise produced by the fin propulsor in the far field using the Ffowcs Williams—Hawkings equation. Verification of this method was based on comparison of the calculated results against experimental values of levels of acoustic pressure when viscous gas flows around the cylinder. The calculated values of pressure fluctuation amplitudes in the far field produced by wing oscillations were compared against analytical estimations obtained by means of modelling of the effect that concentrated fluctuating force (presented as dipole) produces on fluid. The proposed calculation approaches can be used for designing perspective propulsion systems based on the oscillating wing.

About the Authors

К. А. Koval
JSC Central Design Bureau for Marine Engineering «Rubin»
Russian Federation

St.-Petersburg



А. L. Sukhorukov
JSC Central Design Bureau for Marine Engineering «Rubin»
Russian Federation

St.-Petersburg



I. А. Chernishev
JSC Central Design Bureau for Marine Engineering «Rubin»
Russian Federation

St.-Petersburg



References

1. Слижевский Н. Б. Гидробионика в судостроении. Николаев: Изд-во УГМТУ, 2002. 112 с.

2. Козлов Л. Ф. Теоретическая био-гидродинамика. Киев: Вища школа, 1983. 240 с.

3. Козлов Л. Ф. Очерки по гидробионике. Киев: Наукова думка, 1985. 110 с.

4. Robotic Visions to 2020 and beyond - The Strategic Research Agenda for robotics in Europe, 07/2009. http://www.roboticsplatform.eu (дата обращения: 27.12.2014).

5. Ffowcs Williams J. E., Hawkings D. L. Sound Generated by Turbulence and Surfaces in Arbitrary Motion // Philosophical Transactions of the Royal Society, Ser: A264. 1969. P. 321—342.

6. Яковенко В. В. О распределении давления по поверхности профиля, гармонически колеблющегося в поступательном потоке // Труды Ленинградского политехнического института. 1953. № 5. С. 23—29.

7. Фын Я. Ц. Введение в теорию аэроупругости. М.: Физматлит, 1959. 524 с.

8. Бисплингхофф Р. Л., Эшли Х., Халфмэн Р.Л. Аэроупругость. М.: Изд-во иностранной литературы, 1958. 799 с.

9. Миниович И. Я., Перник А. Д., Петровский В. С. Гидродинамические источники шума. Л.: Судостроение, 1972. 317 с.

10. Петровский В. С. Гидродинамические проблемы турбулентного шума. Л.: Судостроение, 1966. 252 с.

11. Смольяков А. В. Шум турбулентных потоков. Л.: Изд-во ЦНИИ им. А.Н. Крылова, 2005. 312 с.

12. Ламб Г. Гидродинамика. М.-Л.: Гостехиздат, 1947. 928 с.

13. Карабасов С. А. Использование гибридного метода для моделирования шума от высокоскоростных лопастей вертолета // Математическое моделирование. 2006. Т. 18, № 2. С.3—23.

14. Lighthill M. J. On Sound Generated Aerodynamically, I: General Theory // Proceedings of the Royal Society, Ser: A221. 1952. P. 564—587.

15. Brentner K. S., Farassat F. An Analitical Comparision of the Acoustics Analogy and Kirchhoff Formulation for Moving Surfaces // AIAA Journal. 1998. Vol. 36, № 8. P. 1379—1386.

16. Curle N. The Influence of Solid Boundaries upon Aerodynamic Sound // Proceedings of the Royal Society, Ser: A231. 1955. P. 505—510.

17. Усанин М. В. Применение акустической аналогии для расчета звука в дальнем поле // Математическое моделирование систем и процессов. 2004. № 12. С. 101—109.

18. Голдстейн М. Е. Аэроакустика. М.: Машиностроение, 1981. 294 с.


Review

For citations:


Koval К.А., Sukhorukov А.L., Chernishev I.А. Results of verification of the numerical method for calculation of hydrodynamic and hydroacoustic charachteristics of the fin propulsor. Fundamental and Applied Hydrophysics. 2016;9(4):60-72. (In Russ.)

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)