Preview

Fundamental and Applied Hydrophysics

Advanced search

The radon transport and the atmospheric boundary layer electric state formation

Abstract

The mechanisms of influence of stratified turbulence to the formation of the atmospheric boundary layer electric state and the variability of electric parameters are discussed. As a result of the field observations and numerical modeling, it is found that the development of convection in the atmospheric boundary layer reduces the electric conductivity near the surface. The stochastic electrodynamic model, reproducing the evolution of the vertical profiles of electric conductivity and aeroelectric field intensity in the lower troposphere of mid-latitudes land undisturbed by precipitations and thunderstorms, is used for the calculations. The results show that the increased turbulence generation due to convection accompanied by an increase of the turbulent kinetic energy and the variance of vertical turbulent velocity tends to more intensive vertical mixing of radon and its short-lived daughters. In this case, the turbulent transport of radon leads to more uniform vertical distribution of the electric conductivity and an increase of the aeroelectric field intensity in the surface layer. Estimations of the variability of electric conductivity and aeroelectric field intensity, caused by radon emissions, air ionization, charge separation on the electric conductivity inhomogeneities, turbulent transport of radioactive elements and space charge, are performed. It is assumed that altitudinal aeroelectric profiles can be objective and operative parameters of the atmospheric boundary layer turbulent conditions.

About the Authors

S. V. Anisimov
Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth
Russian Federation

Russian Academy of Sciences, Borok



S. V. Galichenko
Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth
Russian Federation

Russian Academy of Sciences



K. V. Aphinogenov
Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth
Russian Federation

Russian Academy of Sciences, Borok



References

1. Garratt J. R. The Atmospheric Boundary Layer. Camridge: Cambridge University Press, 1992. 316 p.

2. Stull R. B. An introduction to boundary layer meteorology. Dordrecht: Kluwer Academic Publishers, 1988. 670 p.

3. Анисимов С. В., Шихова Н. М. Вариабельность электрического поля невозмущенной атмосферы средних широт // Геофизические исследования. 2008. № 3. С. 25—38.

4. Анисимов С. В., Афиногенов К. В., Шихова Н. М. Динамика электричества невозмущенной атмосферы средних широт: от наблюдений к скейлингу // Радиофизика. 2013. Т. 56, № 11—12. С. 787—802.

5. Zhang K., Feichter J., Kazil J., Wan H., Zhuo W., Griffiths A. D., Sartorius H., Zahorowski W., Ramonet M., Schmidt M., Yver C., Neubert R. E. M., Brunke E.-G. Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions // Atmos. Chem. Phys. 2011. V. 11. P. 7817—7838.

6. Анисимов С. В., Галиченко С. В., Шихова Н. М., Афиногенов К. В. Электричество конвективного атмосферного пограничного слоя: натурные наблюдения и численное моделирование // Известия РАН. Физика атмосферы и океана. 2014. Т. 50, № 4. С. 1—9. DOI: 10.7868/S0002351514040026.

7. Anisimov S. V., Mareev E. A., Shikhova N. M., Dmitriev E. M. Universal spectra of electric field pulsations in the atmosphere // Geophys. Res. Letters. 2002. V. 29, N. 24, 2217, doi:10.1029/2002GL015765.

8. Willett J. C. Fair weather electric charge transfer by convection in an unstable planetary boundary layer // J. Geoph. Res. 1979. V. 84. P. 703—718.

9. Hoppel W. A., Anderson R. V., Willet J. C. Atmospheric electricity in the planetary boundary layer // The Earth's electrical environment. Krider, E.P. and Roble, R.G., Eds. Washington: Natl. Acad. Press, 1986. P. 149—165.

10. Anderson B., Markson R., Fairall C. W., Willett J. C. Aircraft investigation of the turbulent transport of electric charge through the unstable planetary boundary layer // Final Technical Report submitted to the Air Force Office of Scientific Research. 1989. 321 p.

11. Marshall T. C., Rust W. D., Stolzenburg M., Roeder W. P., Krehbiel P. R. A study of enhanced fair-weather electric fields occurring soon after sunrise // J. Geophys. Res. 1999. V. 104. P. 24455—24469.

12. Анисимов C. В., Мареев Е. А., Шихова Н. М. Механизмы связи аэроэлектрического и температурного полей нижней атмосферы // Радиофизика. 2006. Т. 49, № 1. С. 35—52.

13. Анисимов C. В., Галиченко С. В., Афиногенов К. В., Макрушин А. П., Шихова Н. М. Объемная активность радона и ионообразование в невозмущенной нижней атмосфере: наземные наблюдения и численное моделирование // Физика Земли. 2017. № 1. С. 1—16. DOI: 107868/S0002333717010033.

14. Stohl A., Thomson D. J. A density correction for Lagrangian particle dispersion models // Boundary-Layer Meteorol. 1999. V. 90. P. 155—167.

15. Cassiani M., Stohl A., Brioude J. Lagrangian stochastic modelling of dispersion in the convective boundary layer with skewed turbulence conditions and a vertical density gradient: Formulation and implementation in the FLEXPART model // Boundary-Layer Meteorol. 2015. V. 154. P. 367—390. DOI 10.1007/s10546-014-9976-5.

16. Lin J. C., Gerbig C. How can we satisfy the well-mixed criterion in highly inhomogeneous flows? A practical approach. Lagrangian Modeling of the Atmosphere / Eds. Lin J., Brunner D., Gerbig C., Stohl A., Luhar A., Webley P. AGU. Geopress, 2012. P. 59—69.

17. Liu S. C., McAfee J. R., Cicerone R. J. Radon 222 and tropospheric vertical transport // J. Geophys. Res. 1984. V. 89. P. 7291—7297.

18. Jacob D. J., Prather M. J. Radon-222 as a test of convective transport in a general circulation model // Tellus. 1990. 42B. P. 118—134.

19. Williams A. G., Zahorowski W., Chambers S., Griffiths A., Hacker J. M., Element A., Werczynsky S. The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers // J. Atmos. Sci. 2011. V. 68. P. 155—174.

20. Chambers S., Williams A. G., Crawford J., Griffiths A. D. On the use of radon for qualifying the effects of atmospheric stability on urban emissions // Atmos. Chem. Phys. 2015. V. 15. P. 1175—1190.

21. Vargas A., Arnold D., Adame J. A., Grossi C., Hernándes-Ceballos M. A., Bolivar J. P. Analysis of the vertical radon structure at the Spanish «El Arenosillo» tower station // J. Environ. Radioactivity. 2015. V. 139. P. 1—17.

22. Vinuesa J.-F., Galmarini S. Caracterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer // Atmos. Chem. Phys. 2007. V. 7. P. 697—712.

23. Vinuesa J.-F., Basu S., Galmarini S. The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the WANGARA experiment // Atmos. Chem. Phys. 2007. V. 7. P. 5003—5019.

24. Degrazia G. A., Anfossi D., Carvalho J. C., Mangia C., Tirabassi T., Campos Velho H. F. Turbulence parameterization for PBL dispersion models in all stability conditions // Atmospheric Environment. 2000. V. 34. P. 3575—3583.

25. Jacoby-Koaly S., Campistron B., Bernard S., Bénech B., Ardhuin-Girard F., Dessens J., Dupont E., Carissimo B. Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements // Boundary-Layer Meteorol. 2002. V. 103. P. 361—389.

26. Balsley B. B., Frehlich R. G., Jensen M. L., Meillier Y. High-resolution in situ profiling through the stable boundary layer: examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease // J. Atmos. Sci. 2006. V. 63. P. 1291—1307.

27. Tjernström M., Balsley B. B., Svensson G., Nappo C. J. The effects of critical layers on residual layer turbulence // J. Atmos. Sci. 2009. V. 66. P. 468—480.

28. Rakesh P. T., Venkatesan R., Srinivas C. V. Formulation of TKE based empirical diffusivity relations from turbulence measurements and incorporation in a Lagrangian particle dispersion model // Envir. Fluid Mech. 2013. V. 13. P. 353—369.

29. Anisimov S. V., Galichenko S. V., Shikhova N. M. Space charge and aeroelectric flows in the exchange layer: An experimental and numerical study // Atm. Res. 2014. V. 135—136. P. 244—254.

30. Анисимов С. В., Шихова Н. М. Фрактальные свойства аэроэлектрических пульсаций // Геофизические исследования. 2015. T. 16. № 4. С. 28—45.


Review

For citations:


Anisimov S.V., Galichenko S.V., Aphinogenov K.V. The radon transport and the atmospheric boundary layer electric state formation. Fundamental and Applied Hydrophysics. 2016;9(4):7-14. (In Russ.)

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)