Seasonal Variability of the Thermohaline Structure of the Mesoscale Eddies in the Lofoten Basin
https://doi.org/10.7868/S2073667321010020
Abstract
In this research, we apply the method of colocalization of altimetry data and CTD profiles from multiple platforms (research vessels, autonomous profiling floats, and gliders) to study the seasonal variability of thermohaline structures of cyclonic and anticyclonic eddies in the Lofoten Basin. We demonstrate the thermohaline structure of anticyclonic eddies reveals significant seasonal variability manifesting itself in the deepening of positive anomalies in the summer period and decreasing the vertical extension of the eddy cores. We show that a prominent feature of the thermohaline structure of cyclonic eddies is the positive salinity anomalies in the upper layer. We establish mean zonal eddy-induced transport is generally westward in both summer and winter periods. The pronounced seasonal cycle manifests itself in the intensification of zonal and meridional eddy-induced transport in winter.
About the Authors
N. V. SandalyukRussian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
T. V. Belonenko
Russian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
References
1. Novoselova E.V., Belonenko T.V. Isopycnal advection in the Lofoten Basin of the Norwegian Sea. Fundam. Prikl. Gidrofiz. 2020, 13, 3, 56–67 (in Russian). doi: 10.7868/S2073667320030041
2. Fedorov A.M., Belonenko T.V. Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database. Russ. J. Earth Sci. 2020, 20, 2, ES2002. doi: 10.2205/2020ES000694
3. Ivanov V.V., Korablev A.A. Formation and regeneration of the pycnocline lens in the Norwegian Sea. Russ. Meteorol. Hydrol. 1995, 9, 62–69 (in Russian).
4. Ivanov V.V., Korablev A.A. Dynamics of an intrapycnocline lens in the Norwegian Sea. Russ. Meteorol. Hydrol. 1995, 10, 55–62 (in Russian).
5. Bashmachnikov I.L., Sokolovskiy M.A., Belonenko T.V., Volkov D.L., Isachsen P.E., Carton X. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep Sea Res. Part I. 2017, 128, 1–27. doi: 10.1016/j.dsr.2017.08.001
6. Bashmachnikov I., Belonenko T., Kuibin P., Volkov D., Foux V. Pattern of vertical velocity in the Lofoten vortex (the Norwegian Sea). Ocean Dyn. 2018, 68, 12, 1711–1725. doi: 10.1007/s10236–018–1213–1
7. Belonenko T.V., Bashmachnikov I.L., Koldunov A.V., Kuibin P.A. On the vertical component of velocity in the Lofoten vortex of the Norwegian Sea. Izv. Atmos Ocean Phys. 2017, 53, 6, 641–649. doi: 10.1134/S0001433817060032
8. Belonenko T.V., Fedorov A.M. Steric level fluctuations and deep convection in the Labrador and Irminger Seas. Izv. Atmos Ocean Phys. 2018, 54, 9, 1039–1049. doi: 10.1134/S0001433818090086
9. Belonenko T.V., Volkov D.L., Ozhigin V.K., Norden Yu.E. Circulation of waters in the Lofoten Basin of the Norwegia Sea. Vestnik of Saint Petersburg University. Earth Sciences. 2014, Ser. 7, 2, 108–121 (in Russian).
10. Belonenko T.V., Koldunov A.V., Sentyabov E.V., Karsakov A.L. Thermohaline structure of the Lofoten vortex in the Norwegian sea based on field research and hydrodynamic modeling. Vestnik of Saint Petersburg University. 2018, 63, 4, 502–519. doi: 10.21638/spbu07.2018.406
11. Volkov D.L., Belonenko T.V., Foux V.R. Puzzling over the dynamics of the Lofoten Basin — a sub-Arctic hot spot of ocean variability. Geophys. Res. Lett. 2013, 40, 4, 738–743. doi: 10.1002/grl.50126
12. Köhl A. Generation and stability of a quasi-permanent vortex in the Lofoten Basin. J. Phys. Oceanogr. 2007, 37, 2637–2651.
13. Koldunov A.V., Belonenko T.V. Hydrodynamic Modeling of Vertical Velocities in the Lofoten Vortex. Izv. Atmos Ocean Phys. 2020, 56, 5, 502–511. doi: 10.1134/S0001433820040040
14. Travkin V.S., Belonenko T.V. Mixed layer depth in winter convection in the Lofoten Basin in the Norwegian Sea and assessment methods. Gidrometeorologiya i Ekologiya. (Proceedings of the Russian State Hydrometeorological University). 2020, 59, 67–83. (in Russian). doi: 10.33933/2074–2762–2020–59–67–83
15. Mork K.A., Skagseth Ø. A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography. Ocean Sci. 2010, 6, 901–911. doi: 10.5194/os-6–901–2010
16. Bosse A., Fer I. Mean structure and seasonality of the Norwegian Atlantic Front Current along the Mohn Ridge from repeated glider transects. Geophys. Res. Lett. 2019, 46, 13170–13179. doi: 10.1029/2019GL084723
17. Zinchenko V.A., Gordeeva S.M., Sobko Y.V., Belonenko T.V. Analysis of Mesoscale eddies in the Lofoten Basin based on satellite altimetry. Fundam. Prikl. Gidrofiz. 2019, 12, 3, 46–54. doi: 10.7868/S2073667319030067
18. Gordeeva S., Zinchenko V., Koldunov A., Raj R.P., Belonenko T. Statistical analysis of long-lived mesoscale eddies in the Lofoten Basin from satellite altimetry. Adv. in Space Res. 2020. doi: 10.1016/j.asr.2020.05.043
19. Belonenko T., Zinchenko V., Gordeeva S., Raj R.P. Evaluation of Heat and Salt Transports by Mesoscale Eddies in the Lofoten Basin. Russ. J. Earth Sci. 2020, 20. doi: 10.2205/2020ES000720
20. Bloshkina E.V., Ivanov V.V. Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution. Proceedings of the Hydrometeorological Research Center of the Russian Federation. 2016, 361, 146–168 (in Russian).
21. Alexeev V.A., Ivanov V.V., Repina I.A., Lavrova O. Yu., Stanichny S.V. Convective Structures in Lofoten Basin from Remote Sensing Data and Argo Floats. Issledovanie Zemli iz Kosmosa. 2016, 1–2, 90–104 (in Russian).
22. Fedorov A.M., Bashmachnikov I.L., Belonenko T.V. Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling. Vestnik of Saint Petersburg University. Earth Sciences. 2019, 4, 3, 491–511 (in Russian). doi: 10.21638/spbu07.2019.308
23. Raj R.P., Johannessen J.A., Eldevik T., Nilsen J.E.Ø., Halo I. Quantifying mesoscale eddies in the Lofoten Basin. J. Geophys. Res. Oceans. 2016, 121, 4503–4521. doi: 10.1002/2016JC011637
24. Raj R.P., Halo I. Monitoring the mesoscale eddies of the Lofoten Basin: importance, progress, and challenges. Int. J. Rem. Sens. 2016, 37, 16, 3712–3728. doi: 10.1080/01431161.2016.1201234
25. Travkin V.S., Belonenko T.V. Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data. Russ. J. Earth. Sci. 2020, 19, ES5004. doi: 10.2205/2019ES000676
26. Sandalyuk N.V., Bosse A., Belonenko T.V. The 3D structure of Mesoscale Eddies in the Lofoten Basin of the Norwegian Sea: A composite analysis from altimetry and in situ data. J. Geophys. Res. Oceans. 2020, 125, e2020JC016331. doi: 10.1029/2020JC016331
27. Chelton D.B., Schlax M.G., Samelson R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216.
28. Mesoscale Eddy Trajectory Atlas Product Handbook, SALP-MU-P-EA-23126-CLS, issue 3.0. URL: https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_eddytrajectory_META2018.pdf (date of access: 01.09.2020).
29. Williams S., Hecht M., Petersen M., Strelitz R., Maltrud M., Ahrens J., Hlawitschka M., Hamann B. Visualization and analysis of eddies in a global ocean simulation. Comput. Graphics Forum. 2011, 30, 991–1000. doi: 10.1111/j.1467–8659.2011.01948.x
30. Schlax M.G., Chelton D.B. The “Growing Method” of Eddy Identification and Tracking in Two and Three Dimensionsю College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis. 2016, 1–8.
31. Bosse A.,Fer I. HydrographyoftheNordicSeas,2000–2017:Amergedproduct.2018.doi:10.21335/NMDC-1131411242
32. Bosse A., Fer I., Søiland H., Rossby T. Atlantic water transformation along its poleward pathway across the Nordic Seas. J. Geophys. Res. Oceans. 2018, 123, 6428–6448. doi: 10.1029/2018JC014147
33. Yu L.-S., Bosse A., Fer I., Orvik K.A., Bruvik E.M., Hessevik I., Kvalsund K. The Lofoten Basin eddy: Three years of evolution as observed by Seagliders. J. Geophys. Res. Oceans. 2017, 122, 6814–6834. doi: 10.1002/2017JC012982
34. Bosse A., Fer I., Lilly J.M., Søiland H. Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten Basin Eddy. Scientific Reports. 2019, 9, 1–13. doi: 10.1038/s41598–019–49599–8
35. Willis J.K., Fu L.-L. Combining altimeter and subsurface float data to estimate the time‐averaged circulation in the upper ocean. J. Geophys. Res. Oceans. 2008, 113. doi: 10.1029/2007JC004690
36. Chaigneau A., Le Texier M., Eldin G., Grados C., Pizarro O. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. Oceans. 2011, 116. doi: 10.1029/2011JC007134
37. Yang G., Wang F., Li Y., Lin P. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. J. Geophys. Res. Oceans. 2013, 118, 1906–1925. doi: 10.1002/jgrc.20164
38. Dong D., Brandt P., Chang P., Schutte F., Yang X., Yan J., Zeng J. Mesoscale eddies in the Northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. J. Geophys. Res. Oceans. 2017, 122, 9795–9813. doi: 10.1002/2017JC013303
39. He Q., Zhan H., Cai S., He Y., Huang G., Zhan W. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Oceans. 2018, 123, 4906–4929. doi: 10.1029/2018JC014054
40. Kubryakov A.A., Bagaev A.V., Stanichny S.V., Belokopytov V.N. Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data. Prog. Oceanogr. 2018, 167, 44–63.
41. Keppler L., Cravatte S., Chaigneau A., Pegliasco C., Gourdeau L., Singh A. Observed characteristics and vertical structure of mesoscale eddies in the southwest tropical Pacific. J. Geophys. Res. Oceans. 2018, 123, 2731–2756. doi: 10.1002/2017JC013712
42. Zhang Z., Zhang Y., Wang W., Huang R.X. Universal structure of mesoscale eddies in the ocean. Geophys Res Lett. 2013, 40, 3677–3681. doi: 10.1002/grl.50736
43. Barnes S.L. Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-69. 1973, Norman, OK: National Severe Storm Laboratory.
44. Pegliasco C.A., Chaigneau A., Morrow R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. Oceans. 2015, 120, 6008–6033. doi: 10.1002/2015JC010950
45. Ma J., Xu H., Dong C., Lin P., Liu Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos. 2015, 120, 6313–6330. doi: 10.1002/2014JD022930
46. Simons R.D., Nishimoto M.M., Washburn L., Brown K.S., Siegel D.A. Linking kinematic characteristics and high concentrations of small pelagic fish in a coastal mesoscale eddy. Deep Sea Res. Part I. 2015, 100, 34–47. doi: 10.1016/j.dsr.2015.02.002
47. Limits of Oceans and Seas (Special Publication № 23). International Hydrographic Organization. 1953. 38 p.
48. Fedorov A.M., Bashmachnikov I.L., Belonenko T.V. Localization of areas of deep convection in the Nordic seas, the Labrador Sea and the Irminger Sea. Vestnik of Saint Petersburg University. Earth Sciences. 2018, 63, 3, 345–362 (in Russian). doi: 10.21638/spbu07.2018.306
49. Lebedev K.V., Filyushkin B.N., Kozhelupova N.G. Argo-based study of water, heat, and salt exchange between Atlantic, Nordic Seas, and Arctic Ocean. J. Oceanolog. Res. 2019, 47, 2, 183–197 (in Russian).
Review
For citations:
Sandalyuk N.V., Belonenko T.V. Seasonal Variability of the Thermohaline Structure of the Mesoscale Eddies in the Lofoten Basin. Fundamental and Applied Hydrophysics. 2021;14(1):15-30. (In Russ.) https://doi.org/10.7868/S2073667321010020