Topographic Effect for Rossby Waves on a Zonal Shear Flow
https://doi.org/10.7868/S2073667321010019
Abstract
The present study analyses the influence of topography, β-effect, and the gradient of the meridional variability of the background current on the barotropic topographic Rossby waves. We exclude the stratification effect from the problem and consider a vertically integrated zonal flow because the previous results show that short waves are seldom, and the stratification effect on long Rossby waves is insignificant. We consider the transverse (meridional) variability of the background topography current in the WKB approximation. Thus, we obtain a dispersion relation for plane barotropic topographic Rossby waves, which simultaneously accounts for the effects of the Earth’s rotation, velocity shear, and topography. The GLORYS12v1 product for the Antarctic Circumpolar Current zone is used to calculate the current velocity shift. The topography structure is modeled as an elongated ridge and approximated by an exponential and a Gaussian function with different parameters. The results show that the contribution of the shear flow can overlap the contribution of topography locally. The topographic factor in the dispersion relation is dominant. Specifically, in the southern hemisphere, on the northern side of the ridge, the impact of topography on the Rossby waves intensifies due to the β-effect, while, on the southern side, it reduces due the β-effect.
Keywords
About the Authors
V. G. GnevyshevRussian Federation
117997, Nahimovsky Pr., 36, Moscow
A. V. Frolova
Russian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
A. V. Koldunov
Russian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
T. V. Belonenko
Russian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
References
1. Nezlin M.V. Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type). Sov. Phys. Usp. 1986, 29, 807–842. doi: 10.1070/PU1986v029n09ABEH003490
2. LeBlond P., Mysak L.A. Waves in the Ocean. Elsevier Scientific Publishing Company, 1977. 602 p.
3. Veronis G. Rossby waves with bottom topography. J. Mar. Res. 1966, 24, 3, 338–349.
4. Rhines P.B. Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid. Dyn. 1970, 1, 3–4, 273–302.
5. Killworth P.D., Blundell J.R. Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The Local Problem. J. Phys. Oceanogr. 2003, 33, 4, 784–801. doi: 10.1175/1520–0485(2003)33<784:LEPWPI>2.0.CO;2
6. Killworth P.D., Blundell J.R. Planetary wave response to surface forcing and to instability in the presence of mean flow and topography. J. Phys. Oceanogr. 2007, 37, 1297–1320. doi: 10.1175/JPO3055.1
7. Charney J.G., Flierl G.R. Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography. Eds. B.A. Warren, C. Wunsh. Chapter 18. MIT Press, Cambridge, Massachusetts, 1981, P. 504–548.
8. Bobrovich A.V., Reznik G.M. Planetary waves in a stratified ocean of variable depth. Part 2. Continuously stratified ocean. J. Fluid Mech. 1999, 388, 147–169. doi: 10.1017/S0022112099004863
9. Kamen’kovich V.M., Monin A.S. Physics of the ocean. V. 2.: Hydrodynamics of ocean. M., Nauka, 1978. 435 p. (in Russian).
10. Gnevyshev V.G., Frolova A.V., Kubryakov A.A., Sobko Yu.V., Belonenko T.V. Interaction of Rossby waves with a jet stream: basic equations and their verification for the Antarctic circumpolar current. Izv. Atmos. Oceanic Phys. 2019, 55, 5, 412–422. doi: 10.1134/S0001433819050074
11. Pedlosky J. Geophysical Fluid Dynamics. Berlin, Springer, 1979. 624 p.
12. La Casce J.H. Theprevalenceofoceanicsurfacemodes.Geophys. Res. Lett.2017,44,11097–11105.doi:10.1002/2017GL075430
13. Brink K.H., Pedlosky J. Rossby Waves with Continuous Stratification and Bottom Friction. J. Phys. Oceanogr. 2018, 48, 2209–2219. doi: 10.1175/JPO-D-18–0070.1
14. Killworth P.D., Blundell J.R. The dispersion relation for planetary waves in the presence of mean flow and topography. Part I: Analytical theory and one-dimensional examples. J. Phys. Oceanogr. 2004, 34, 12, 2692–2711. doi: 10.1175/JPO2635.1
15. Killworth P.D., Blundell J.R. The dispersion relation for planetary waves in the presence of mean flow and topography. Part II: two-dimensional examples and global results. J. Phys. Oceanogr. 2005, 35, 11, 2110–2133.
16. Gill A.E. Atmosphere–Ocean Dynamics. Academic Press. 1982. 662 p.
17. Chelton D.B., de Szoeke R.A., Schlax M.G., El Naggar K., Siwertz N. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 1998, 28, 3, 433–460. doi: 10.1175/1520–0485(1998)028<0433:GVOTFB>2.0.CO;2
18. Chelton D.B., Schlax M.G., Samelson R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. doi: 10.1016/j.pocean.2011.01.002
19. Tarakanov R. Yu. Doctoral Dissertation in Physics and Mathematics. Institute of Oceanology, Russian Academy of Sciences, Moscow, 2015. (in Russian).
20. Knauss J.A., Garfield N. Introduction to physical oceanography. Waveland Press, 2016. 310 p.
21. Zyryanov V.N. Topographic eddies in a stratified ocean. Regular and Chaotic Dynamics. 2006, 11, 4, 491–521. doi: 10.1070/RD2006v011n04ABEH000367
22. Nowlin W.D., Klinck J.M. The physics of the Antarctic circumpolar current. Rev. Geophys. 1986, 24, 3, 469–491. doi: 10.1029/RG024i003p00469
23. Smith K.S., Marshall J. Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr. 2009, 39, 50–69. doi: 10.1175/2008JPO3880.1
24. Phillips H.E., Rintoul S.R. Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr. 2000, 30, 12, 3050–3076. doi: 10.1175/1520–0485(2000)030<3050:EVAEFD>2.0.CO;2
25. Morrow R., Le Traon P.-Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv. Spa. Res. 2012, 50, 1062–1076. doi: /10.1016/j.asr.2011.09.033
26. Donohue K.A., Watts D.R., Hamilton P., Leben R., Kennelly M. Loop current eddy formation and baroclinic instability. Dyn. Atmos. Oceans. 2016, 76, part 2, 195–216. doi: 10.1016/j.dynatmoce.2016.01.004
27. Marshall D. Topographic steering of the Antarctic Circum- polar Current. J. Phys. Oceanogr. 1995, 25, 7, 1636–1650. doi: 10.1175/1520–0485(1995)025<1636:TSOTAC>2.0.CO;2
28. Ruan X., Thompson A.F., Flexas M.M., Sprintall J. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning. Nature Geoscience. 2017, 10, 11, 840–845. doi: 10.1038/ngeo3053
29. Thompson A.F. The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2008, 366, 1885, 4529–4541. doi: 10.1098/rsta.2008.0196
30. Belonenko T.V., Zakharchuk E.A., Fuks V.R. Gradient-vortex waves in the ocean. St. Petersburg, Izdatelstvo SPbGU. 2004. 215 p. (in Russian).
31. Rhines P.B. Slow oscillation in an ocean of varying depth. Part 1. Abrupt topography. J. Fluid. Mech. 1969, 37, 1, 161– 189. doi: 10.1017/S0022112069000474
Review
For citations:
Gnevyshev V.G., Frolova A.V., Koldunov A.V., Belonenko T.V. Topographic Effect for Rossby Waves on a Zonal Shear Flow. Fundamental and Applied Hydrophysics. 2021;14(1):4-14. https://doi.org/10.7868/S2073667321010019