Stably stratified planetary boundary layer effects in northern hemisphere climate
Abstract
Planetary boundary layers contribute to the shaping and maintaining of the Earth’s climate. The deep penetrative convection and convective adjustment cool the planet and controls the hydrological cycle. Hence, the convective processes are intensively studied by climatologists. By contrast, the shallow stably-stratified boundary layer receives much less attention. Its impact is mostly associated with local climate features. This study demonstrates that the stratified boundary layer has significant impact on the global earth’s climate. The study identifies the stably-stratified boundary layer depth as a leading factor modulating the surface air temperature response to anomalous climate heat balance. Geographically, the regions with the largest surface air temperature trends and variability are collocated with the regions where the shallow stably-stratified boundary layers frequently occur. The linear correlation coefficients between the inverse stably-stratified boundary layer depth and the surface air temperature reach 0.4—0.6 over Eurasia and the Arctic sea ice. Particularly strong correlations are found for the continental climates over Siberia where the impacts of soil moisture and cloudiness are less pronounced. Climate models do not adequately represent the depth of the stably-stratified boundary layer which results in systematic model biases both in climate temperature trends and in short-term temperature variability.
About the Authors
I. EsauRussian Federation
Saint-Petersburg
Bergen
R. Davy
Russian Federation
Saint-Petersburg
Bergen
References
1. Esau I., Davy R., Outten S. Complementary explanation of temperature response in the lower atmosphere // Environ. Res. Lett. 2012. 7. 044026.
2. Baklanov A. A., Grisogono B., Bornstein R., Mahrt L., Zilitinkevich S. S., Taylor P., Larsen S. E., Rotach M. W., Fernando H. J. S. The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers // Bulletin of the American Meteorological Society. 2011. P. 123—128.
3. Zhang Y., Stevens B., Medeiros B., Ghil M. Low-Cloud Fraction, Lower-Tropospheric Stability, and Large-Scale Divergence // J. Clim. 2010. 22. P. 4827—4844.
4. Arakawa A., Jung J.-H. Multiscale modeling of the moist-convective atmosphere — A review // Atmospheric Research. 2011. 102. P. 263—285.
5. Sherwood S., Bony S., Dufresne J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing // Nature. 505. P. 37—42.
6. Arakawa A. The cumulus parameterization problem: past, present, and future // J. Clim. 2004. 17. P. 2493—2525.
7. King J. C., Jrrar A., Connolley W. M. Sensitivity of modelled atmospheric circulation to the representation of stable boundary layer processes // Geophys. Res. Lett. 2007. 34. L06708. doi:10.1029/2006GL028563.
8. Kim K.-Y., North G. R. Surface Temperature Fluctuations in a Stochastic Climate Model // J. Geophys. Res. 1991. 96. 18,573—18,580.
9. Esau I. Formulation of the planetary boundary layer feedback in the earth's climate system // Comput. Technol. 2008. 13. P. 90—103.
10. Walters J. T., McNider R. T., Shi X., Norris W. B., Christy J. R. Positive surface temperature feedback in the stable nocturnal boundary layer // Geophys. Res. Lett. 2007. 34. L12709.
11. Zilitinkevich S. S., Esau I. Planetary boundary layer feedbacks in climate system and triggering global warming in the night, in winter and at high latitudes // Geography, Environment, Sustainability. 2009. 20—34.
12. Gentine P., Entekhabi D., Polcher J. The Diurnal Behavior of Evaporative Fraction in the Soil–Vegetation–Atmospheric Boundary Layer Continuum // J. Hydrometeorology. 2011. 12. P. 1530—1546.
13. Zhou L., Chen H., Hua W., Dai Y., Wei N. Mechanisms for stronger warming over drier ecoregions observed since 1979 // Climate Dyn. 2016.
14. Alexander L., Zhang X., Peterson T. et al. Global observed changes in daily climate extremes of temperature and precipitation // J. Geophys. Res. 2006. 111. D05109.
15. Esau I., Davy R., Outten S. Complementary explanation of temperature response in the lower atmosphere // Environ. Res. Lett. 2012. 7. 044026.
16. Davy R., Esau I. Global climate models’ bias in surface temperature trends and variability // Environ. Res. Lett. 2014. 9. 114024.
17. Karl T. R., Knight R. W., Gallo K. P., Peterson T. C., Jones P. D., Kukla G., Plummer N., Razuvayev V., Lindseay J., Charlson R. J. A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature // Bulletin of American Meteorological Society. 1993. 74. P. 1007—1023.
18. McNider R., Steeneveld G., Holtslag A., Mackaro S., Pour-Biazar A., Walters J., Nair U., Christy J. Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing // J. Geophys. Res. 2012. 117. D14106.
19. Davy R., Esau I., Outten S., Chernokulsky A., Zilitinkevich S. Diurnal asymmetry to the observed global warming // International Journal of Climatology. 2016. doi: 10.1002/joc.4688
20. Holt T., Raman S. A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes // Rev. Geophys. 1988. 26. P. 761—780.
21. Zilitinkevich S. S., Esau I. Resistance and heat transfer laws for stable and neutral planetary boundary layers: old theory, advanced and re-evaluated // Quart. J. Royal Meteorol. Soc. 2005. 131. 1863—1892.
22. Zilitinkevich S. S., Hunt J. C. R., Grachev A. A., Esau I., Lalas D. P., Akylas E., Tombrou M., Fairall C. W., Fernando H. J. S., Baklanov A., Joffre S. M. The influence of large convective eddies on the surface layer turbulence // Quart. J. Royal Meteorol. Soc. 2006. 132. P. 1423—1456.
23. Zilitinkevich S. S., Esau I., Baklanov A. Further comments on the equilibrium height of neutral and stable planetary boundary layers // Quart. J. Royal Meteorol. Soc. 2007. 133. P. 265—271.
24. Mauritsen T., Svensson G., Zilitinkevich S. S., Esau I., Enger L., Grisogono B. A total turbulent energy closure model for neutral and stably stratified atmospheric boundary layers // J. Atmos. Sci. 2007. 64, 11. P. 4117—4130.
25. Zilitinkevich S. S., Esau I., Kleeorin N., Rogachevskii I., Kouznetsov R. D. On the velocity gradient in stably stratified sheared flows. Part 1: Asymptotic analysis and applications // Boundary-Layer Meteorol. 2010. 135. P. 505—511.
26. Zilitinkevich S. S., Elperin T., Kleeorin N., Rogachevskii I., Esau I. A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows // Boundary-Layer Meteorology. 2013. 146, 3. P. 341—373.
27. Outten S., Davy R., Esau I. Eurasian winter cooling: Intercomparison of reanalyses and CMIP5 data sets // Atmos. Oceanic Sci. Lett. 2013. 6, 5. P. 324—331.
28. Knight C. G., Knight S., Massey N., Aina T., Christensen C., Frame D. J., Kettleborough J. A., Martin A., Pascoe S., Sanderson B., Stainforth D. A., Allen M. R. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models // PNAS. 2007. 104. P. 12259—12264.
29. Qu M., Wan J., Hao X. Analysis of diurnal air temperature range change in the continental United States // Weather and Climate Extremes. 2014. 4. P. 86—95.
30. Zilitinkevich S. S., Baklanov A., Rost J., Smedman A. S., Lykosov V., Calanca P. Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer // Quart. J. Royal Meteorol. Soc. 2002. 128. P. 25—46.
Review
For citations:
Esau I., Davy R. Stably stratified planetary boundary layer effects in northern hemisphere climate. Fundamental and Applied Hydrophysics. 2016;9(3):42-47.