Preview

Fundamental and Applied Hydrophysics

Advanced search

Bubble gas escapes from the bottom of Lake Baikal, dependence of gas flare height on methane flux

Abstract

The paper summarizes the results of echolocation measurements of gas flux from the bubble gas escapes at the bottom of Lake Baikal, obtained in 2005—2014. For the first time the relationship between the height of the acoustic image of the rising bubbles jet and the corresponding methane flux was established. An analysis of this dependence shows that all gas flares are divided into three groups depending on their depth: shallow, intermediate and deep gas seeps. The results of unique observations of three events of gas eruption are discussed. It is shown that the methane flux in the first emissions was by more than an order of magnitude higher than the average, typical for the steady-state emission regime. The range of bubbles radii variation was estimated by ascent rate of bubbles clouds boundaries localized by depth.

About the Authors

M. M. Makarov
Limnological Institute Siberian Branch of the RAS
Russian Federation

Irkutsk



S. I. Muyakshin
Lobachevsky State University of Nizhny Novgorod
Russian Federation

Nizhny Novgorod



K. M. Kucher
Limnological Institute Siberian Branch of the RAS
Russian Federation

Irkutsk



I. A. Aslamov
Limnological Institute Siberian Branch of the RAS
Russian Federation

Irkutsk



R. Y. Gnatovsky
Limnological Institute Siberian Branch of the RAS
Russian Federation

Irkutsk



N. G. Grani
Limnological Institute Siberian Branch of the RAS
Russian Federation

Irkutsk



References

1. Kvenvolden K. A. Gas hydrates — geological perspective and global change // Rev. Geophys. 1993. N. 31. P. 173—187.

2. Егоров В. Н., Артемов Ю. Г., Гулин С. Б. Метановые сипы в Черном море: средообразующая и экологическая роль / Под ред. Г. Г. Поликарпова. Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2011. 405 c.

3. Обжиров А. И. Газогеохимические поля придонного слоя морей и океанов. М.: Наука, 1993. 139 c.

4. Обжиров А. И. По следам 67-го рейса. URL: http://ankulikova.blogspot.ru/2014_07_01_archive.html (дата обращения: 20.05.2015).

5. Granin N. Gases escape from Baikal bottom sediments: analyses of historical records // Abstract Book VII International Conference on Gas in Marine Sediments and Natural Marine Hydrocarbon Seepage in the World Oceans With Applications to the Caspian Sea. 2002. P. 53—55.

6. Klerkx J. Methane hydrates in deep bottom sediments of Lake Baikal // Doklady Earth Sciences. 2003. N. 393. P. 1342—1346.

7. Hutchinson D. Bottom simulating reflector in Lake Baikal // Eos Trans. AGU: Spring Meeting. 1991. N. 72. P. 307—308.

8. Khlystov O. Gas hydrate of Lake Baikal: Discovery and varieties // Journal of Asian Earth Sciences. 2013. N. 62. P. 162—166.

9. Granin N. Gas seeps in Lake Baikal — detection, distribution, and implications for water column mixing // Geo-Marine Letters. 2010. N. 30. P. 399—409.

10. Granin N. Estimation of methane fluxesfrom bottom sediments of Lake Baikal // Geo-Marine Letters. 2012. N. 32. P. 427—436.

11. Shimaraev M. Physical limnology of Lake Baikal: a review // Print N. 2. 1994.

12. Simrad руководство пользователя. URL: http://www.simrad.net/ek60_ref_english/default.htm (Date of access: 10.02.2015).

13. Urick R. Principles of underwater sound, 3rd ed. New York: McGraw-Hill, 1983.

14. Муякшин С. И., Заутер Э. Дистанционный акустический метод определения производительности подводного источника газовых пузырьков // Океанология. 2010. Т. 50, № 6. С. 1045—1051.

15. Ishimaru A. Wave propagation and scattering in random media. New York: Press, 1997. 320 p.

16. Weber T. Acoustic estimates of methane gas flux from the seabed in a 6000 km 2 region in the Northern Gulf of Mexico // Geochem. Geophys. Geosyst. 2014. N. 15. P. 1911—1925.

17. Veloso M. A new methodology for quantifying bubble flow rates in deep water using splitbeamechosounders: Examples from the Arctic offshore NW-Svalbard // Limnol. Oceanogr. 2015.

18. Мельник Н. Г. Гидроакустический учет ресурсов байкальского омуля. Новосибирск: Наука, 2009. 243 с.

19. McGinnis D. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? // J. Geophys. Res. 2006. doi:10.1029/2005JC003183

20. Гончаров В. К., Клементьева Н. Ю. Моделирование динамики и условий звукорассеяния газовых пузырьков, всплываюших с больших глубин в море в районе нефтегазовых месторождений // Акуст. журнал. 1995. Т. 42, № 3. С. 371—377.

21. Greinert J. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps // Geo-Mar Lett. 2004. N. 24. P. 75—85.


Review

For citations:


Makarov M.M., Muyakshin S.I., Kucher K.M., Aslamov I.A., Gnatovsky R.Y., Grani N.G. Bubble gas escapes from the bottom of Lake Baikal, dependence of gas flare height on methane flux. Fundamental and Applied Hydrophysics. 2016;9(3):32-41.

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)