The problems of contemporary concept of isostasy and scale effects for fractured Earth’s crust of continents and oceans
Abstract
Isostatic ideas appeared within the framework of E. de Beaumont’s contractional hypothesis, which based on views of Kant–Laplace as well as on ideas of primarily smelted Earth and processes of its gradual cooling and compression. Formed as a shell Earth’s crust gradually increased the thickness with clenching into the folds and stay in hydrostatical balance with the underlying substratum. During triangulations of XVIII—XIX centuries differences between the measured deflection of the vertical near mountain ranges and estimates were fixated, so J. Pratt and G. B. Airy had an opportunity to suggest the existence of deep compensating masses. C. E. Dutton, the author of the term «isostasy», considered the wide range of geological problems. Distinction of measured deflection of the vertical is explained by known in gravimetry effect of «neighbor» masses, which formed the North-Atlantic and Indian planetary anomalies of geoid, as well as by real «macrodesdensity» of rock massifs, which is not detected by surveying of density and porosity of small samples of rocks. Modern difficulties with the concept are connected with the explanation of global displacements of asthenosphere masses in planetary eustasy, hydro- and glaciostasy on the rotating Earth as well as the explanation of negative result of gravimetrical experiment for the verification of Fennoscandian «floating»’ isostatic mechanism. The reaction of Earth surface and oceans’ bed to the changes of external loads is usually considered according the unified process of maintaining the isostatic equilibrium. These hypotheses are contradicted with the facts of «high crustal sensitivity» even to small oscillations of external loads as well as total fracturing of the Earth’s crust and scale addictions of its physical and deformation properties from the size of the application area loads. Two mechanisms of the crust’s reaction are suggested: «compression–dilatation» of macropored areas in the layer of 0—10 km and, according to the results of ultradeep boring on the Kola Peninsula, — the phase mechanism at great depths. The ways of experimental research of such effects in the areas of abnormal natural and anthropogenic stresses are discussed.
About the Authors
V. I. BogdanovRussian Federation
T. I. Malova
Russian Federation
References
1. Жарков В. Н. Внутреннее строение Земли и планет. М.: Наука ГРФМЛ, 1983. 416 с.
2. Rosat S. et al. High-resolution analysis of the gravest seismic normal modes after the 2004 Mw = 9 Sumatra earthquake using superconducting gravimeter data // Geophys. Res. Lett. 2005. V. 32. L13304. doi:10.1029/2005GL023128.
3. Линьков Е. М., Петрова Л. Н., Зурошвили Д. Д. Сейсмогравитационные колебания Земли и связанные с ними возмущения атмосферы // Доклады АН СССР. 1989. Т. 306. С. 314—317.
4. Швед Г. М., Ермоленко С. И., Хоффманн П. Регистрация собственных колебаний атмосферы в диапазоне периодов 1-5 часов // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. С. 562—569.
5. Wielandt E. Seismometry // International handbook of earthquake and engineering seismology / (Eds.) Lee W.H.K., Kanamori H., Jennings P.C., Kisslinger C. Academic Press. London and San Diego, 2002. P. 283—304.
6. Climate Prediction Center (CPC), Daily Arctic Oscillation Index: ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.ao.index.b500101.current.ascii (дата обращения: 27.04.2016).
7. Duchon C. E. Lanczos filtering in one and two dimensions // J. Appl. Meteorol. 1979. V. 18. P. 1016—1022.
8. Press W. H. et al. Numerical recipes in FORTRAN 77: The art of scientific computing. New York: Cambridge Univ. Press, 1997. P. 569—577.
9. Scargle J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly space data // Astrophys. J. 1982. V. 263. P. 835—853.
10. Пустыльник Е. И. Статистические методы анализа и обработки наблюдений. М.: Наука ГРФМЛ, 1968. 288 с.
11. Nawa K. et al. Incessant excitation of the Earth’s free oscillations // Earth Planets Space. 1998. V. 50. P. 3—8; Reply V. 50. P. 887—892. 1998.
12. Tanimoto T. et al. Earth’s continuous oscillations observed on seismically quiet days // Geophys. Res. Lett. 1998. V. 25. P. 1553—1556.
13. Tanimoto T., Um J. Cause of continuous oscillations of the Earth // J. Geophys. Res. 1999. V. 104(B). P. 28,723—28,739.
14. Nishida K., Kobayashi N., Fukao Y. Resonant oscillations between the solid earth and the atmosphere // Science 2000. V. 287. P. 2244—2246.
15. Tanimoto T. Excitation of normal modes by atmospheric turbulence: Source of long period noise // Geophys. J. Int. 1999. 136. P. 395—402.
16. Ekstrom G. Time domain analysis of Earth’s long-period background seismic radiation // J. Geophys. Res. 2001. V. 106. P. 26,483—26,494.
17. Nishida K., Kobayashi N. Statistical features of Earth’s continuous free oscillations // J. Geophys. Res. 1999. V. 104(B). P. 28,741—28,750.
18. Fukao Y. et al. A theory of the Earth’s background free oscillations // J. Geophys. Res. 2002. V. 107(B9). 2206. doi:10.1029/2001JB000153.
19. Rhie A., Romanowicz B. Excitations of the earth’s incessant free oscillation by atmosphere/ocean/solid Earth coupling // Nature. 2004. V. 431. P. 552—556.
20. Nishida K., Fukao Y. Source distribution of Earth’s background free oscillations // J. Geophys. Res. 2007. V. 112. B06306. doi:10.1029/2006JB004720.
Review
For citations:
Bogdanov V.I., Malova T.I. The problems of contemporary concept of isostasy and scale effects for fractured Earth’s crust of continents and oceans. Fundamental and Applied Hydrophysics. 2016;9(3):3-17. (In Russ.)