Simple Method of Determination of Ground-Based Aerosol Sources Using Back Trajectory Analysis Results
Abstract
A simple method of spatio-temporal localization of the ground-based aerosol sources, using the results of back trajectory analysis (BTA), is described in the paper. The key parameter of the method is the derivative of pressure by time (P't). A positive value corresponds to an upward air flow, negative one corresponds to a downward air flow. Two conditions are needed to satisfy in order to identify the ground source of aerosols in a specific location of the Earth: air mass is in the surface layer (below 700 mbar); P't > 20 mbar/hour, that is equivalent to an upstream flow with a velocity of several cm/s or more. Latter condition corresponds to the mesoscale vertical movements of the same signs of the air volumes with the horizontal dimensions of the order of 10–100 km. The value of 20 mbar/h is based on the analysis of the long-term (2007–2012) array of data of BTA for AERONET station Sevastopol. We also tried to take into account the process of «aerosol removing with precipitation». The criterion for a downward air flow is: P't < −20 mbar/h. If this condition is satisfied, it means that the atmospheric layer does not contain aerosol captured earlier by upstream flows from Earth’s surface. Method validation was carried out using data of Sevastopol station (network AERONET) and satellite optical scanner MODIS. The relation between the area of origin and specific aerosol optical properties was observed at Sevastopol station (network AERONET). The featureы of its impact on the results of the standard atmospheric correction of MODIS measurements have been shown on the example of dust aerosol from two arid zones. The results of this study will be useful to specialists, solving the problem of atmospheric correction of measurements of upward radiance on top of the atmosphere in visible range of spectrum above the water surface.
About the Authors
D. V. KalinskayaRussian Federation
Sevastopol
V. V. Suslin
Russian Federation
Sevastopol
References
1. Kneizys F. X. et al. Users Guide to LOWTRAN 7 URL: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA206773 (дата обращения: 01.08.2014).
2. Кондратьев К. Я. и др. Атмосферный аэрозоль. Л.: Гидрометеоиздат, 1983. 224 с.
3. Young R. W. et al. Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific // Global Biogeochem. Cycles. 1991. V. 5, N 2. H. 119–134, doi:10.1029/91GB00927.
4. Gordon H. R. еt al. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm // Applied Optics. 1994. 33. P. 443–452.
5. Claustre H. et al. Is desert dust making oligotrophic waters greener? // Geophys. Res. Lett. 2002. V. 29(10), doi:10.1029/2001GL014506.
6. Suslin V. V. et al. Desert dust effects in the results of atmospheric correction of satelle sea color observations // Current Problems in Optics of Natural Waters: Proc. 4th Int. Conf. (Nizhny Novgorod, September 11–15, 2007) Nizhny Novgorod. 2007. P. 184—187.
7. AERONET. URL: http://aeronet.gsfc.nasa.gov/ (дата обращения: 01.08.2014).
8. Ahmad Z. et al. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans // Applied Optics. 2010. V. 49, N 29. Р. 5545–5560.
9. Ahmed S. et al. Hyperspectral and multispectral above-water radiometric measurements to monitor satellite data quality over coastal area // Proc. SPIE 8030, Ocean Sensing and Monitoring III, 803002 (May 04, 2011); doi:10.1117/12.884674; http://dx.doi.org/10.1117/12.884674.
10. Moulin C. et al. Atmospheric correction of ocean color imagery through thick layers of Saharan dust // Geophys. Res. Let. 2001. V. 28. P. 5–8.
11. Pickering K. E. et al. Trace gas transport and scavenging in PEM-Tropics B South Pacific Convergence Zone convection // J. Geophys. Res. 2001. V. 106. P. 32591–32602.
12. Пример результата BTA за 17 декабря 2008 года на 0 часов (UTC) для севастопольской станции AERONЕT: http://croc.gsfc.nasa.gov/aeronet/IMAGES/Y08/M12/ktraj_tlk_7bck08121700231.asciidat.gz (дата обращения: 01.08.2014).
13. Dubovik O. et al. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105, N 20. P. 673–696.
14. Dubovik O. et al. Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiance measurements // J. Geophys. Res. 2000. V. 105. P. 9791–9806.
15. Севастопольская станция AERONET. URL: http://aeronet.gsfc.nasa.gov/new_web/photo_db/Sevastopol.html (дата обращения: 01.08.2014).
16. Список продуктов AERONET. URL: http://aeronet.gsfc.nasa.gov/new_web/data_description.html (дата обращения: 01.08.2014).
17. NASA Ocean Color Browser. URL: http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am (дата обращения: 01.08.2014).
18. КЯМ. URL: http://oceancolor.gsfc.nasa.gov/WIKI/AtmoCor.html (дата обращения: 01.08.2014).
19. Гришин Г. А. и др. Об эволюции южных циклонов, выходящих на Черное море и территорию Украины, по данным спутниковых и наземных наблюдений // Исследование Земли из космоса. 1991. № 3. C. 89–94.
20. Kubilay N. et al. Optical properties of mineral dust outbreaks over the northeastern Mediterranean // J. Geophys. Res. 2003. V. 108, N D21. P. 4666. doi:10.1029/2003JD003798.
Review
For citations:
Kalinskaya D.V., Suslin V.V. Simple Method of Determination of Ground-Based Aerosol Sources Using Back Trajectory Analysis Results. Fundamental and Applied Hydrophysics. 2015;8(1):59-67. (In Russ.)