Preview

Fundamental and Applied Hydrophysics

Advanced search

Luminescent Spectroscopy of Uranium(VI) Complexes in Natural Waters

Abstract

We present the investigation of uranium(VI) complexes using steady-state and time-resolved laser induced fluorescence spectroscopy. Dependences of uranyl complexes’ photophysical parameters on local environmental parameters (i. e. coordination or anion ligands number in the first coordination sphere), global environmental parameters (solution ionic strength, temperature, humic substances concentration) and excitation radiation intensity are investigated. We demonstrate that the dependence of integral luminescence of uranium(VI) complexes on the total concentration of fluoride-anion in solution is not monotonous. Our investigation of uranium solutions with humic and fulvic acids demonstrates that the process of uranyl luminescence quenching is a static quenching process and it can be described by Stern-Volmer equation. We show that the process of uranyl excited state deactivation depends on the laser excitation intensity. This dependence could be explained with diffusion-limited excited state annihilation, which is a process involving interaction of excited ions. Presented results provide a better understanding of uranium(VI) complexes luminescent properties which should be taken into account in the fluorescent diagnostic tools development.

About the Authors

G. S. Budylin
M. V. Lomonosov Moscow State University
Russian Federation


E. A. Shirshin
M. V. Lomonosov Moscow State University
Russian Federation


V. G. Petrov
M. V. Lomonosov Moscow State University
Russian Federation


S. N. Kalmykov
M. V. Lomonosov Moscow State University
Russian Federation


V. V. Fadeev
M. V. Lomonosov Moscow State University
Russian Federation


References

1. May C. C., Worsfold P. J., Keith-Roach M. J. Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices // Trends in Analytical Chemistry. 2008. V. 27, N 2. P. 160—168.

2. Arnold T. et al. Identification of the uranium speciation in an underground acid mine drainage environment // Geochimica et Cosmochimica Acta. 2011. V. 75. P. 2200—2212.

3. Collins R., Saito T., Aoyagi N., Payne T., Kimura T., Waite T. D. Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides // J. of Environmental Quality. 2011. V. 40. P. 732—741.

4. Billard I. et al. Aqueous Solutions of Uranium(VI) as Studied by Time-Resolved Emission Spectroscopy: A Round-Robin Test // Applied Spectroscopy. 2003. V. 57, N 8. P. 1027—1038.

5. Formosinho S., Burrows H. et al. Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution // Photochem. Photobiol. Sci. 2003. V. 2. P. 569—575.

6. Bell J. T., Biggers R. E. The absorption spectrum of the uranyl ion in perchlorate media: Part I. Mathematical resolution of the overlapping band structure and studies of the environmental effects // Journal of Molecular Spectroscopy. 1965. V. 18, N 3. P. 247—275.

7. Burneau A., Tazi M., Bouzat G. Raman spectroscopic determination of equilibrium constants of uranyl sulphate complexes in aqueous solutions // Talanta. 1992. Т. 39, N 7. P. 743—748.

8. Ghosh R. et al. Ultrafast dynamics of the excited states of the uranyl ion in solutions // The Journal of Physical Chemistry A. 2010. V. 114, N 16. P. 5263—5270.

9. Chemical Equilibrium Diagrams. Описание загрузки, установки и использования программы моделирующей равновесные распределения компонент в химических системах [электронный ресурс]. URL: https://sites.google.com/site/ chemdiagr (дата обращения: 22.01.2015).

10. Budylin G., Shirshin E., Fadeev V., Petrov V., Kalmykov S. Laser-induced fluorescence of uranyl complexes in aqueous solutions: the role of diffusion-controlled excited states annihilation // Optics express. 2013. V. 21, N 18. P. 20517—20528.

11. Fadeev V. V., Dolenko T. A., Banishev A. A., Litvinov P. N., Maslov D. V., Ostroumov E. E. Matrix method in laser fluorimetry of organic compounds // Proceedings of SPIE. Optical Sensing and Spectroscopy. 2005. V. 5826. P. 44—55.

12. Fadeev V. V., Shirshin E. A. Nonlinear laser flurescence spectroscopy of natural organic compounds // Handbook of Coherent-Domain Optical Metods: Biomedical Diagnostics, Enviromental Monitoring, and Material Science. Chapter 30. / Ed. by V. V. Tuchin. New York: Kluwer—Springer, Springer Science+Business Media, 2013. P. 1255—1288.

13. Ширшин Е. А., Калмыков С. Н., Фадеев В. В., Будылин Г. С., Петров В. Г. Способ определения парциальных концентраций физико-химических форм урана(VI) в их водной смеси. Патент РФ № 2515193. Заявка 2012-07-05.


Review

For citations:


Budylin G.S., Shirshin E.A., Petrov V.G., Kalmykov S.N., Fadeev V.V. Luminescent Spectroscopy of Uranium(VI) Complexes in Natural Waters. Fundamental and Applied Hydrophysics. 2015;8(1):34-40. (In Russ.)

Views: 116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)