Preview

Fundamental and Applied Hydrophysics

Advanced search

Demodulation of Amplitude-Modulated Beam Propagating through Seawaters

Abstract

The modulation transfer function of an amplitude modulated signal propagating through seawater is explored. This function describes the dependence of the signal modulation depth on modulation frequency in the propagation process and is the most important factor determining the optical communication quality. The experimental data received as the laboratory simulation of the radiation transfer through seawaters are compared to results of the theoretical studies. The deployed experimental set-up and media simulating the optical characteristics of seawaters are briefly introduced. Theoretical studies are performed in the framework of the multi-component approach along with the small-angle diffusion approximation of the radiative transfer theory using the software CLIW (Communication with Light In Water) implementing this theory. It is shown that the theoretical approach deployed in the CLIW software ensures the satisfactorily description of the propagating amplitude-modulated signal characteristics and estimation of the parameters of a communication channel in seawaters at sufficiently large distances from the optical source. Beside it is noted there is a need to know the media phase function in a fairly wide range of angles for such comparisons. In this work the effect theoretically predicted in 1971 was experimentally confirmed for the first time. This effect consists in the fact that the asymptotic deep mode for the alternative component of the signal can take place only for a certain range of frequency modulation values. The maximum angular intensity distribution for the alternative component of the signal takes place not in the «forward» direction but at a certain observation angle q > 0°. The position of this maximum depends on the frequency modulation and optical characteristics of medium.

About the Authors

I. Katsev
Institute of Physics, National Academy of Science of Belarus
Belarus

Minsk



E. Zege
Institute of Physics, National Academy of Science of Belarus
Belarus

Minsk



A. Prokhach
Institute of Physics, National Academy of Science of Belarus
Belarus

Minsk



B. Cochenour
NAVAIR
United States

Patuxent River, MD, USA



L. Mullen
NAVAIR
United States

Patuxent River, MD, USA



References

1. Зеге Э. П., Иванов А. П., Кацев И. Л. Перенос изображения в рассеивающей среде. Мн.: Наука и техника, 1985. 327 с.

2. Zege E. P., Ivanov A. P., Katsev I. L. Image Transfer through a Scattering Medium. Heidelberg: Springer-Verlag, 1991. 391 p.

3. Zege E. P., Katsev I. L., Polonsky I. N. Multicomponent approach to light propagation in clouds and mists // Appl. Optics. 1993.V. 32. P. 2803–2812.

4. Кацев И. Л. Об интегральных характеристиках при нестационарном рассеянии света // Доклады АН БССР. 1969. Т. 13, № 2. С. 118–121.

5. Гордеев Л. Б., Лучинин А. Г., Щегольков Ю. Б. Экспериментальные исследования структуры узкого синусоидально модулированного пучка света в модельной анизотропно рассеивающей среде // Изв. АН СССР, сер. Физика атмосферы и океана. 1975. Т. 11, № 1.С. 86–90.

6. Cochenour B. Experimental Measurements of Temporal Dispersion for Underwater Laser Communications and Imaging. A dissertation for the Degree of Doctor of Philosophy. Raleigh, North Carolina, 2013.

7. Mullen L., Alley D., Cochenour B. Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water // Appl. Optics. 2011. V. 50, N 10. P. 1396–1404.

8. Mullen L., Laux A., Cochenour B. Time-dependent underwater opitcal propagation measurements using modulated light fields // Proc. SPIE: Ocean Sensing and Monitoring. 2009. P. 73170D1–73170D8.

9. Mullen L., Laux A., Cochenour B. Propagation of modulated light in water: implications for imaging and communications systems // Appl. Optics. 2009. V. 48, N 14. P. 2607–2612.

10. Mullen L. et al. Optical modulation technqiues for underwater detection, ranging, and imaging // Proc. SPIE: Ocean Sensing and Monitoring III. 2011. P. 1–9.

11. Gloge D., Chinnock E. L., Ring D. H. Direct measurement of the (Baseband) frequency response of multimode fibers // Appl. Optics. 1972. V. 11, N 7. P. 1534–1538.

12. Helkey R. J. et al. Millimeterwave signal generation using semiconductor diode lasers // Microwave and Optical Technology Letters. 1993. V. 6, N 1. P. 1–5.

13. Шифрин К. С. Рассеяние света в мутной среде. М.-Л.: Гостехиздат, 1951. 288 с.

14. Zege E. P. et. al. Simple model of the optical characteristics of bubbles and sediments in seawater of the surf zone // Appl. Optics. 2006. V. 45. P. 6577–6585.

15. Jerlov N. G. Marine Optics. New York: Elsevier, 1976.

16. Лучинин А. Г., Савельев В. А. Асимптотика синусоидально модулированного поля излучения в изотропно рассеивающей среде // Изв. вузов, Радиофизика. 1970. Т. 13, № 12. С. 1789–1793.

17. Кацев И. Л. О глубинном режиме при распространении в мутной среде синусоидально модулированного пучка света // Изв. АН СССР, сер. Физика атмосферы и океана. 1971. Т. 7, № 2. С. 212–218.


Review

For citations:


Katsev I., Zege E., Prokhach A., Cochenour B., Mullen L. Demodulation of Amplitude-Modulated Beam Propagating through Seawaters. Fundamental and Applied Hydrophysics. 2015;8(1):27-33. (In Russ.)

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)