Modelling dissolved organic nutrients in the Gulf of Finland
https://doi.org/10.7868/S2073667318040111
Abstract
St.-Petersburg model of eutrophication (SPBEM) has been modified for improving description of organic matter as a part of the nutrient biogeochemical cycles. The dynamics of labile and refractory fractions of dissolved organic nitrogen and phosphorus are now described with four additional equations. The modification was tested at the Gulf of Finland in a numerical experiment made with plausible initial and actual boundary conditions for the years 2009—2014. Comparison of simulation with the available field observations indicates quite reasonable reproducibility of seasonal and inter-annual variations of spatial distribution of hydrophysical and biogeochemical characteristics, including almost a perfect match between simulated and observed dynamic of organic nutrients. The most important distinction from natural prototypes is the overestimated total amounts of inorganic nitrogen and phosphorus, which can be caused by the deficiencies in the prescription of initial and boundary conditions as well as in the current parameterizations of pathways and rates of mineralization fluxes. The finer tuning of SPBEM-2 requires more extensive sensitivity analysis.
About the Authors
O. M. VladimirovaRussian Federation
St.-Petersburg
T. R. Eremina
Russian Federation
St.-Petersburg
A. V. Isaev
Russian Federation
Moscow
V. A. Ryabchenko
Russian Federation
Moscow
O. P. Savchuk
Russian Federation
St.-Petersburg; Stockholm, Sweden
References
1. HELCOM. Sources and pathways of nutrients to the Baltic Sea. Baltic Sea Environ // Proc. No. 153, 2018. 47 p.
2. HELCOM. Copenhagen Ministerial Declaration: Taking Further Action to Implement the Baltic Sea Action Plan - Reaching Good Environmental Status for a healthy Baltic Sea. 3 October 2013, Copenhagen, Denmark. URL: http://helcom.fi/Documents/Ministerial2013/Ministerial%20declaration (Accessed on 01.04.2018).
3. Savchuk O. P. Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016 // Front. Mar. Sci. 2018. 5:95. doi: 10.3389/fmars.2018.00095
4. HELCOM. Summary Report on the Development of Revised Maximum Allowable Inputs (MAI) and Updated Country Allocated Reduction Targets (CART) of the Baltic Sea Action Plan. URL: http://helcom.fi/Documents/Ministerial2013/Associated%20documents/Supporting (Accessed on 01.04.2018)
5. Deutsch B., Alling V., Humborg C., Korth F., Mörth C. M. Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem // Biogeosciences. 2012. 9. P. 4465—4475.
6. Sandberg J., Andersson A., Johansson S.,Wikner J. Pelagic foodweb structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon // Mar. Ecol. Prog. Ser. 2004. 268. P. 13—29.
7. Hoikkala L., Kortelainen P., Soinne H., Kuosa H. Dissolved organic matter in the Baltic Sea // Journal of Marine Systems 2015. 142. P.47—61. doi:10.1016/j.jmarsys.2014.10.005/
8. Savchuk O. Studies of the assimilation capacity and effects of nutrient load reductions in the eastern Gulf of Finland with a biogeochemical model // Boreal Environ. 2000. Res. 5. P. 147—163.
9. Savchuk O. P., Eremina T. R., Isaev A. V., Neelov I. A. Response of eutrophication in the eastern Gulf of Finland to nutrient load reduction scenarios // Hydrobiologia. 2009. 629. P. 225—237.
10. Eilola K., Gustafsson B. G., Kuznetsov I., Meier H. E. M., Neumann T., Savchuk O. P. Evaluation of biogeochemical cycles in an ensemble of three state-of-the-art numerical models of the Baltic Sea // J. Mar. Syst. 2011. 88. P. 267—284. doi: 10.1016/j.jmarsys.2011.05.004.
11. Lessin G, Raudsepp U., Stips A. Modelling the Influence of Major Baltic Inflows on Near-Bottom Conditions at the Entrance of the Gulf of Finland // PLoS ONE. 2014. 9(11). e112881. doi:10.1371/journal.pone.0112881.
12. Ryabchenko V. A., Karlin L. N., Isaev A. V., Vankevich R. E., Eremina T. R., Molchanov M. S. Model estimates of the eutrophication of the Baltic Sea in the contemporary and future climate // Oceanology. 2016. 56. P. 36—45. doi: 10.1134/S0001437016010161
13. Marshall J., Adcroft A., Hill C., Perelman L., Heisey C. A finite-volume, incompressible navier-stokes model for studies of the ocean on parallel computers // J. Geophys. Res. 1997. 102(C3). P. 5753—5766.
14. Marshall J., Hill C., Perelman L., Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling // J. Geophysical Res. 1997. 102(C3). P. 5733—5752. doi: 10.1029/96JC02776.
15. Gaspar P., Gregoris Y., Lefevre J.-M. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site // Journal of Geophysical Research. 1990. 95-C9. P. 179—193.
16. Zhang J., Hibler W. D., III. On an efficient numerical method for modeling sea ice dynamics // J. Geophys. Res. 1997.102(C4) P. 8691—8702.
17. Losch M., Menemenlis D., Campin J.-M., Heimbach P., Hill C. On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations // Ocean Modelling. 2010. 33(1–2). P. 129—144. doi:10.1016/j.ocemod.2009.12.008.
18. Stevens D. P. On open boundary conditions for three dimensional primitive equation ocean circulation models // Geophys. Astrophys. Fl. Dyn. 1990. 51. P. 103—133.
19. Savchuk O. P. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model // J. Mar. Sys. 2002. 32. P. 235—280.
20. Savchuk O. P., Gustafsson B. G., Müller-Karulis B. BALTSEM — a marine model for the decision support within the Baltic Sea Region // BNI Technical Report. 2012. N 7. 55 p.
21. Gustafsson E., Deutsch B., Gustafsson B. G., Humborg C., Mörth C.-M. Carbon cycling in the Baltic Sea — The fate of allochthonous organic carbon and its impact on air–sea CO2 exchange // J. Mar. Syst. 2013. 129. P. 289—302. doi:10.1016/j.jmarsys.2013.07.005.
22. Savchuk O. P. Large-Scale Dynamics of Hypoxia in the Baltic Sea // Chemical Structure of Pelagic Redox Interfaces: Observation and Modeling / Ed. E. V. Yakushev. Berlin; Heidelberg: Hdb Env Chem; Springer Verlag, 2013, 137—160
23. The Gulf of Finland assessment // Reports of the finnish environment institute / Editors: Mika Raateoja and Outi Setälä. 2016, 27. Finnish Environment Institute, 2016. 363 p.
24. Data Assimilation System. Baltic Nest Institute, Stockholm University. URL: http://nest.su.se/das (Accessed on 5 Apr 2018).
25. Sokolov A., Andrejev O., Wulff F., Rodriguez Medina M. The data assimilation system for data analysis in the Baltic Sea. Systems Ecology Contributions 3, Stockholm University, Stockholm, 1997.
26. Eilola K., Meier H. E. M., Almroth E. On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; a model study
27. // J. Mar. Syst. 2009. 75. P. 163—184. doi:10.1016/j.jmarsys.2008.08.009
28. Baltic Environmental Database. Baltic Nest Institute, Stockholm University. URL: http://nest.su.se/bed (Accessed on 5 Apr 2018).
29. HELCOM. Updated Fifth Baltic Sea Pollution Load Compilation (PLC-5.5) // Baltic Sea Environment Proceedings. 2015. N 145.
30. Gustafsson E., Savchuk O. P., Gustafsson B. G., Muller-Karulis B. Key processes in the coupled carbon, nitrogen, and phosphorus cycling of the Baltic Sea // Biogeochemistrty. 2017. 134. P. 301—317.
31. Lehtoranta J., Savchuk O. P., Elken J., Dahlbo K., Kuosa H., Raateoja M. et al. Atmospheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland // J. Mar. Syst. 2017. 171. P. 4—20. doi: 10.1016/j.jmarsys.2017.02.001
32. Nausch M., Nausch G. Dissolved phosphorus in the Baltic Sea — Occurrence and relevance // J. Mar. Syst. 2011. 87. 37–46. doi: 10.1016/j.jmarsys.2011.02.022
33. Ylöstalo P., Seppälä J., Kaitala S., Maunula P., Simis S. Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland — Biogeochemical composition and spatial distribution within the salinity gradient // Marine Chemistry 2016. 186. P. 58—71. doi:10.1016/j.marchem.2016.07.004
34. Vahtera E., Conley D. J., Gustafsson B. G., Kuosa H., Pitkänen H., Savchuk O. P., Tamminen T., Viitasalo M., Voss M., Wasmund N. etc. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea // AMBIO: A journal of the Human Environment. 2007. 36. P. 186—194.
35. Yakushev E. V., Pollehne F., Jost G., Kuznetsov I., Schneider B., Umlauf B. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with anumerical model // Mar. Chem. 2007. 107: 388—410.
36. Lessin G., Raudsepp U., Maljutenko I., Laanemets Jelena Passenko J., Jaanus A. Model study on present and future eutrophication and nitrogen fixation in the Gulf of Finland, Baltic Sea // J. Mar. Syst. 2014. 129. P. 76—85.
37. Gustafsson B. G., Schenk F., Blenckner T., Eilola K., Meier H. E. M., Müller-Karulis B., Neumann T., Ruoho-Airola T., Savchuk O. P., Zorita E. Reconstructing the development of Baltic Sea eutrophication 1850—2006 // Ambio. 2012. 41. P. 534—548.
Review
For citations:
Vladimirova O.M., Eremina T.R., Isaev A.V., Ryabchenko V.A., Savchuk O.P. Modelling dissolved organic nutrients in the Gulf of Finland. Fundamental and Applied Hydrophysics. 2018;11(4):90-101. https://doi.org/10.7868/S2073667318040111