Research of acoustic noises and characteristics of multipath effect in shallow arctic seas to optimize parameters of hydroacoustic communication equipment
https://doi.org/10.7868/S2073667318040032
Abstract
Field studies of acoustic sea noises and multipath effect characteristics of signal propagation in shallow Arctic seas covered by drifting ice are carried out. The research is made for the purpose of optimization of characteristics of the equipment of a hydro-acoustic channel of digital communications determined for control and operative diagnostics of technically complex underwater objects, such as submerged buoy stations, producing oil and gas platforms and pipelines. A most modern technology of equipment construction, OFDM-type (orthogonal frequency-division multiplexing), which provides simultaneous emanation of large amounts of narrow-band carrier frequencies for parallel binary code transfer, are planned to be used on the channel of communication. Parallel code transfer with some redundancy added provides high speed of data transfer, maximum remotability and noise immunity. Basic OFDM technology is particularly targeted for multipath effect jamming protection and pulse noise jamming peculiar to shallow ice-covered seas. Statistical measures for levels and nature of sea noises and quantitative meanings of amplitude distribution and certain acoustic rays’ time delays caused by tending and drift velocity influence are received, as well as hydrological conditions. The results of the studies allow the reasonable choice and calculations of equipment parameters with OFDM technology, and they also allow providing reception of specified performance characteristics in adverse hydrological conditions.
About the Authors
R. A. BalakinRussian Federation
St.-Petersburg
G. I. Vilkov
Russian Federation
St.-Petersburg
References
1. Al-Mahmoud M., Zoltowski M. D. Performance evaluation of code-spread OFDM using vandermonde spreading // IEEE radio and wireless symposium. 2009. P. 320—323.
2. Cimini L. J. Jr. Analysis and Simulation of a Gigital Mobile Channel using Orthogonal Frequency Division Multiplexing // IEEE Trans. Comm. July 1985. V. COM-33, N 7. P. 665—675.
3. Тюрин А. М. и др. Основы гидроакустики. Л-д: Изд. Судостроение, 1996. 254 с.
4. Евтютов А. П. и др. Справочник по гидроакустике. Л-д: Изд. Судостроение, 1988. 178 с.
5. Chitre M., Shahabudeen S., Stojanoviс M. Underwater Acoustic Communications and Networking: Resent Advances and Future Challenges // Marine technology society journal. 2008. V. 42, N 1, P. 103—116.
6. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение / Пер. с англ. М.: Техносфера, 2005.
7. Сергиенко А. Б. Цифровая обработка сигналов. Учебное пособие. 3-е изд. СПб.: БХВ-Петербург, 2011.
8. Гончаров В. Н. и др. Анализ эффективности адаптивной пространственной фильтрации морской реверберации в многолучевом распространении звука // Акустический журнал. 1993. Т. 39, вып. 2. С. 241—248.
9. Warner W. D., Leung C. OFDM/FM Frame Synchronization for Mobile Radio Data Communication // IEEE Trans. Veh. Techn. August 1993. V. 42, N 3. P. 302—313.
10. Рутенко А. Н. Мониторинг антропогенных акустических шумов на шельфе о. Сахалин // Акустический журнал. 2010, Т. 56, № 1. С. 77—81.
11. Щуров В. А., Ляшков А. С. Влияние гидрологических условий на потери при распространении звука на шельфе // Акустический журнал. 2013. № 4. С. 459—468.
12. Александров И. А. Отражение звука от гладких льдов: методика и результаты расчетов // Акустический журнал. 1994. Т. 40, № 4. С. 673—676.
Review
For citations:
Balakin R.A., Vilkov G.I. Research of acoustic noises and characteristics of multipath effect in shallow arctic seas to optimize parameters of hydroacoustic communication equipment. Fundamental and Applied Hydrophysics. 2018;11(4):17-27. (In Russ.) https://doi.org/10.7868/S2073667318040032