Methodology for Studying the Effect of Low-Frequency High-Intensity Acoustic Fields on Marine Luminous Planktonic Organisms
https://doi.org/10.7868/S2073667321020064
Abstract
«Acoustic pollution» is a dangerous anthropogenic load on the ecosystems of the World Ocean. At present, hydroacoustic emitters are widely used to solve a variety of scientific and applied problems, no longer limited to the traditional tasks of long-distance sound underwater communications, remote control, illumination of the underwater environment, acoustic thermometry of the ocean climate, monitoring of underwater objects, geological, seismic and fishery exploration. In many of the above mentioned applications, in particular in the tasks of providing long-distance sound underwater communication as well as in conducting geological and seismic exploration, powerful sources of low-frequency hydroacoustic fields are needed. The sound pressure created by such hydroacoustic emitters reaches several thousand, and in some cases — tens of thousands of Pa (reduced to 1 m). The effect of sound fields of such intensity on aquatic organisms has hardly been studied. The main problem of such studies is the difficulty in recording the impact of powerful acoustic fields on marine ecosystems. This work is devoted to the development of a methodology for researching the influence of powerful low-frequency sound fields on luminous planktonic marine organisms. The methodology is based on determining the parameters of bioluminescence, which is one of the most important indicators of the functional state of aquatic organisms.
About the Authors
A. K. BritenkovRussian Federation
603950, Ulyanova Str., 46, Nizhny Novgorod
O. V. Mashukova
Russian Federation
119991, Leninsky Pr., 38, Moscow
B. N. Bogolyubov
Russian Federation
603950, Ulyanova Str., 46, Nizhny Novgorod
E. N. Sibirtsova
Russian Federation
119991, Leninsky Pr., 38, Moscow
E. N. Skuratovskaya
Russian Federation
119991, Leninsky Pr., 38, Moscow
A. V. Melnik
Russian Federation
119991, Leninsky Pr., 38, Moscow
M. I. Silakov
Russian Federation
119991, Leninsky Pr., 38, Moscow
References
1. Bogorodskij V.V., Zubarev L.A., Korepin E.A., Yakushev V.I. Underwater electroacoustic transducers. Leningrad, Sudostroeniye, 1983. 248 p. (in Russian).
2. Mosca F., Matte G., Shimura T. Low-frequency source for very long-range underwater communication. J. Acoust. Soc. Am. 2013, 133, 1, EL61–EL67.
3. Shustov А.S. High-speed sonar OFDM modem. Sbornik nauchnykh rabot XIII Mezhdunarodnoj nauchnoj konferentsii Evrazijskogo nauchnogo ob”edineniya. Moskva, ENO, 2016. 45 p. (in Russian).
4. Munk W. Acoustic thermometry of ocean climate (ATOC). J. Acoust. Soc. Am. 1999, 105, 982. doi: 10.1121/1.425359
5. Sapronov A.A., Zibrov V.A., Vorob’yov S.V. Application of piezoelectric transducers in the remote monitoring system of consumed water resources in the field of housing and utilities infrastructure. Elektrotekhnicheskie i Informatsionnye Kompleksy i Sistemy. 2010, 1(6), 35–40 (in Russian).
6. Rolt K.D. History of flextensional electroacoustic transducers. J. Acoust. Soc. Am. 1990, 87, 3, 1340–1349.
7. McCauley R.D., Fewtrell J., Popper A.N. High intensity anthropogenic sound damages fish ears. J. Acoust. Soc. Am. 2003, 113, 1, 638–642.
8. Jorgenson J.K., Gyselman E.C. Hydroacoustic measurements of the behavioral response of arctic riverine fishes to seismic airguns. J. Acoust. Soc. Am. 2009, 126(3):1598–606. doi: 10.1121/1.3177276
9. Stepanyuk I.A. The mystery of suicide whales: the search for physical mechanisms. 2009, 1, URL: https://fiz.1sept.ru/view_article.php?ID=200900112 (Date of access: 01.02.2020).
10. Ivanov M.P. Dolphin communication study: methodology, motor and acoustic indicators. Zhurnal Evolyutsionnoj Biokhimii i Fiziologii. 2009, 45 (6), 575–582 (in Russian).
11. Ridgway S.H., Carder D.A. Whale physiology at depth: hearing, sonar and homeostasis. 995, IV, URL: https://www.vin.com/apputil/content/defaultadv1.aspx?pId=11257&catId=32509&id=3977137 (Date of access: 01.02.2020).
12. Ivanov M.P., Drogan E.V. Experiment to study the cetaceans communication. Memoirs of the Faculty of Physics. 2014, 5, 145351–1–145351–7 (in Russian).
13. Piantadosi C.A., Thalmann E.D. Pathology: Whales, Sonar and Decompression Sickness. Nature. 2004, 428, 6984, 575–576.
14. Herman L.M., Tavolga W.N. The communication systems of cetaceans / Cetacean behavior: Mechanisms and functions. New York, Wiley Interscience, 1980, 149–209.
15. Aguilar de Soto N., Delorme N., Atkins J., Howard S., Williams J. Anthropogenic noise causes body malformations and delays development in marine larvae. J. Comparative Psychology. 2007, 24, 2, 240–249.
16. Sibirtsova E.N., Tokarev Yu.N., Chuprina I.S. Some possible consequences of the shipping intensification for the Black Sea ecosystem. Vestnik Prikaspiya. 2016, 2(13), 42–49 (in Russian).
17. Woolet R. Sonar Transducer Fundumentals. Newport — New London, Naval Underwater Systems Center, 1986. 102 р.
18. Britenkov A.K., Bogolyubov B.N., Smirnov S.A., Perfilov V.A. 3D-printing possibilities for the manufacturing technology development of hydroacoustic longitudinal bending type emitters with the complex radiator’s body geometry. Memoirs of the Faculty of Physics. 2017, 5, 1750104–1–1750104–5 (in Russian).
19. Britenkov A.K., Bogolyubov B.N., Farfel’ V.A., Smirnov S.A., Perfilov V.A. Powerful low-frequency hydroacoustic transducers: problems of design, manufacture and development prospects. Trudy IX Vserossijskoj konf. «Prikladnye Tekhnologii Gidroakustiki i Gidrofiziki». St. Peterburg, 2018, 170–172 (in Russian).
20. Bogolyubov B.N., Britenkov A.K., Kirsanov A.V., Perfilov V.A., Smirnov S.A., Farfel’ V.A. Matching the low-frequency impedance of the excitation system of a high-power hydroacoustic emitter with an electromechanical transducer based on a piezoceramic active element. Trudy Vtoroj rossijsko-belorusskoj nauchno-tekhnicheskoj konferentsii «Elementnaya baza otechestvennoj radioehlektroniki: importozameshhenie i primenenie» im. O.V. Loseva. Nizhnij Novgorod, 2015, 361–365 (in Russian).
21. Andreev M. Ya., Bogolyubov B.N., Klyushin V.V., Rubanov I.L. Low-frequency small-sized longitudinal-bending electroacoustic transducer. Datchiki i Sistemy. 2010, 12, 51–55 (in Russian).
22. Bogolyubov B.N., Kirsanov A.V., Leonov I.I., Smirnov S.A., Farfel’ V.A. Calculation and experimental studies of a compact longitudinal-flexural hydroacoustic transducer with a central radiation frequency of 520 Hz. Gidroakustika. 2015, 23(3), 20–26 (in Russian).
23. Britenkov A.K., Bogolyubov B.N., Smirnov S.A. Longitudinal-bending hydroacoustic transducer. Patent RU2681268. Published 05.03.201. Bulletin 7 (in Russian).
24. Britenkov A.K., Bogolyubov B.N., Deryabin M.S., Farfel’ V.A. Measurement of the electromechanical characteristics of a compact low-frequency hydroacoustic transducer of complex shape. Trudy MАI. 2019, 105, 1–24 (in Russian).
25. Tokarev Yu.N., Evstigneev P.V., Mashukova O.V. Planktonic bioluminescent of the World Ocean: species diversity, characteristics of light emission in normal conditions and under anthropogenic impact. Sevastopol, Orianda, 2016, 340 p. (in Russian).
26. Gitelzone I.I., Levin L.A., Utyushev R.N., Cherepanov O.A., Chugunov O.A. Bioluminescence in the ocean. St. Peterburg, Gidrometeoizdat, 1992. 283 p. (in Russian).
27. Tokarev Yu.N., Mashukova O.V. Bioluminescence of the Black Sea Ctenophores-Aliens as an Index of their Physiological State. Luminescence, J. Biolog. and Chem. Luminescence. 2016, 14, 351 (in Russian).
28. Mel’nikov V.V., Mel’nik А.V., Mel’nik L.А. Features of bioluminescence at the lower boundary of the oxygen zone in the center of the Black Sea. Tezisy Doklada Mezhdunar. Nauch.-Tekhn. Konf., Sevastopol’, 12–13 Sentyabrya 2019 g. Sevastopol’, IPTS, 2019, 121 (in Russian).
29. Serikova I.M., Tokarev Yu.N., Vasilenko V.I., Briantseva Yu.V., Stanichniy S.V., Suslin V.V. Response of phytoplankton of the Sevastopol coastal zone to climate peculiarities of the years 2009–2012. Hydrobiological J. 2016, 52, 1, 40–51 (in Russian).
30. Mashukova O.V., Tokarev Yu.N. Bioluminescence daily rhythm of ctenophore Beroe ovata Mayer, 1912. Proceedings of the Global Congress on ICM: Lessons Learned to Address New Challenges 30 Oct — 03 Nov 2013, Marmaris, Turkey. Marine Biology and Microbiology. II, 729–736.
31. Mashukova O.V. The daily rhythm of light emission of Mnemiopsis leidyi A. Agassiz (Ctenohora: Lobata). Trudy Nauch.-Prakt. Konf. «Ekologicheskie problemy Аzovo-Chernomorskogo Regiona i Kompleksnoe Upravlenie Pribrezhnoj Zonoj». Sevastopol’, EHKOSI-Gidrofizika. 2014, 89–94 (in Russian).
32. Polonsky A.B., Mel’nikova E.B., Serebrennikov A.N., Tokarev Yu.N. Regional peculiarities of hydrobiont bioluminescence intensity and chlorophyll a concentration in Black Sea waters. Atmospheric and Oceanic Optics. 2018, 31(4), 365– 371.
33. Mel’nik А.V., Belogurova Yu.B. Seasonal variability of the bioluminescence field off the coast of the Caucasus in 2018. Sistemy Kontrolya Okruzhayushhej Sredy. 2019, 2 (36), 100–106 (in Russian).
34. Britenkov A.K., Bogolyubov B.N., Farfel’ V.A., Smirnov S. Yu., Kruglov N. Yu. Calculation, design and manufacture of electrical equivalents of powerful low-frequency hydroacoustic transducers. Radiotekhnika. 2019, 5 (6), 129–136 (in Russian).
Review
For citations:
Britenkov A.K., Mashukova O.V., Bogolyubov B.N., Sibirtsova E.N., Skuratovskaya E.N., Melnik A.V., Silakov M.I. Methodology for Studying the Effect of Low-Frequency High-Intensity Acoustic Fields on Marine Luminous Planktonic Organisms. Fundamental and Applied Hydrophysics. 2021;14(2):65-77. (In Russ.) https://doi.org/10.7868/S2073667321020064