Preview

Fundamental and Applied Hydrophysics

Advanced search

Theory of Underwater Imaging

Abstract

The paper presents an overview of the underwater imaging problem. A history of this problem is given. A universal underwater imaging theory is intended for computing image parameters and the maximal visibility distance of an extended target with inhomogeneous reflectance for various, including laser, underwater imaging systems. We consider the main elements of this theory: image transfer equation, beam spread function and modulation transfer function, the algorithms for computing image parameters of a target of limited size and the maximal visibility distance in water. Parameters of underwater light field, which are necessary for these algorithms, are given as a result of solution of the radiative transfer equation in terms of the water inherent optical properties. We present also a universal model of water inherent optical properties for wavelength close to 550 nm which makes it possible to determine all IOPs required for the underwater imaging theory using only the water attenuation coefficient or even Secchi depth. An algorithm for calculating the signal/noise ratio and the maximal sighting range in water are presented and used for comparison of efficiency of the imaging systems of various types. The main directions of the current investigations on the underwater imaging problem are considered, in particular, imaging through wavy sea surface.

About the Authors

L. S. Dolin
Institute of Applied Physics
Russian Federation

N. Novgorod



I. M. Levin
Saint-Petersburg Branch of the P. P. Shirshov Institute of Oceanology of RAS
Russian Federation


References

1. Duntley S. Q. Light in the sea. J. Opt. Soc. Am. 1963. V. 53. P. 214—233. 2. Preizendorfer R. Hydrologic Optics. Honolulu: NOAA, 1976. 1750 p.

2. Ivanoff A. Introduction a L’oceanographie. Paris: Librairie Vuibert, 1975. V. 2. 392 p.

3. Jerlov N. Marine Optics. New York: Elsevier, 1976. 247 p.

4. Ivanov A. P. Phyzical background of hydrooptics. Minsk: Nauka i technika, 503 p. (in Russian).

5. Levin I. M. Observation of objects illuminated by a narrow light beam in a scattering medium. Izv. Atmos. Ocean. Phys. 1969. V. 5, N 1. P. 32—39.

6. Bravo-Zhivotovsky D. M., Dolin L. S., Luchinin A. G., Savel'ev V. A. Some problems of the theory of visibility in turbid media. Izv. Atmos. Ocean. Phys. 1969. V. 5, N 7. P.388—393.

7. Mertence L., Replogle F. Use of point spread and beam spread functions for analysis of imaging systems in water. J. Opt. Soc. Am. 1977. V. 67, N 8. P. 1105—1117.

8. Dolin L. S., Levin I. M. Handbook of the theory of Underwater Vision. Leningrad: Gidrometeoizdat, 1991. 230 p. (in Russian).

9. Dolin L. S., Levin I. M. Optics, underwater. Encyclopedia of Applied Physics. New York: VCH Publ. 1995. V. 12. P. 571—601.

10. Dolin L. S., Levin I. M. Underwater optics. Th. G. Brown et al. (Eds.): The Optics Encyclopedia, Weinheim, Wiley-VCH Publ, 2004. V. 5. P. 3237—3271.

11. Dolin L. S., Gilbert G. D., Levin I. M., Luchinin A. G. Theory of imaging through wavy sea surface. N. Novgorod: Institute of Applied Physics, 2006. 180 p.

12. Duntley S. Q. Underwater visibility and photography. Optical aspects of oceanography. London—New York: 1974. P. 135—149.

13. Gordon H., Brown O., Evans R., Brown J., Smith R., Baker K., Clark D. A semianalytic radiance model of ocean color. J. Geophyz. Research. 1988. V. 93, D 9. P. 10,909—10,924.

14. Sydor M., Arnone R. Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters. Applied Optics. 1997. V. 36, N 27. P. 6905—6912.

15. Voitov V. I. Secchi depth. Ocean optics. A. Monin [ed.], Moscow: Nauka Publ., 1983. V. 2. P. 21—25 (in Russian).

16. Arnone R., Tucker S., Hilder F. Secchi depth atlas of the world coastlines. SPIE Proceedings, 489, Ocean Optics VII. 1984. P. 195—201.

17. Levin I. M., Kopelevich O. V. Correlations between the Inherent Hydrooptical Characteristics in the spectral range close to 550 nm. Oceanology. 2007. V. 47, N 3. P. 344—348.

18. Levin I., Darecki M., Sagan S., Radomyslskaya T. Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem. Oceanologia. 2013. N 55(1). P. 11—26.

19. Morel A., Prieur L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977. V. 22, N 4. Р. 709—722.

20. Schoonmaker J. S., Hammond R. R., Heath A. L., Cleveland J. S. A numerical model for prediction of sublittoral optical visibility. SPIE Proc. Ocean Optics XII. Bergen: Society of Photo-Optical Instrumentation Engineers. 1994. V. 2258. Р. 685—702.

21. Levin I. M., Radomyslskaya T. M. Secchi disk theory: a reexamination // Current Research on Remote Sensing, laser Probing, and Imagery in Natural Waters, edited by I. M. Levin, G. D. Gilbert, V. I. Haltrin, and C. Trees. Proceeding of SPIE. V. 6615. 2007. 66150O (11 p.).

22. Levin I. M., Radomyslskaya T. M. Estimate of water inherent optical properties from Secchi depth. Izv. Atm. Physics. 2012. V. 48, N 2. P. 214—221.

23. Dolina I. S., Dolin L. S., Levin I. M., Rodionov A. A., Savel’ev V. A. Inverse problems of lidar sensing of the ocean // Current Research on Remote Sensing, laser Probing, and Imagery in Natural Waters, edited by I. M. Levin, G. D. Gilbert, V. I. Haltrin, and C. Trees. Proceeding of SPIE. 2007. V. 6615. 66150C (10 p.).

24. Rodionov M. A., Dolina I. S., Levin I. M. Correlations between depth distributions of water attenuation coefficient and density in north seas // Fundam. prikl. gidrofiz. 2012. V. 5, N 4. P. 39—46. (in Russian)

25. Dolina I. S., Dolin L.S. The effect of shear flow on the structure of lidar images of nonlinear internal waves // Proceedings of the VII International Conference «Current Problems in Optics of Natural Waters» (ONW 2013). St.-Petersburg. 2013. P. 12—15.

26. Luchinin A. G. Light pulse propagation along the path: atmosphere–rough surface–sea water // Applied Optics. 2010. V. 49, N 28. P. 5059—5066.

27. Dolin L. S., Levin I. M. Two approaches to computing the distance of underwater visibility // Proceedings of the VII International Conference «Current Problems in Optics of Natural Waters» (ONW 2013). St.-Petersburg, 2013. P. 124—127.

28. Luchinin A. G. Theory of an underwater lidar with a complex modulated illuminating beam // Izv. Atmos. Ocean. Phys. 2012. V. 48, N 6. P. 739—748.

29. Luchinin A. G., Dolin L. S. Complex modulated waves of photon density in underwater imaging // Proceedings of the VII International Conference «Current Problems in Optics of Natural Waters» (ONW 2013). St.-Petersburg, 2013. P. 24—27.

30. Katsev I. L., Zege E. P., Prikhach A. S., Cochenour B., Mullen L. Propagation of the modulated laser beam through sea water: comparison theory with experiment // Proceedings of the VII International Conference «Current Problems in Optics of Natural Waters» (ONW 2013). St.-Petersburg, 2013. P. 128—132.

31. Levin I. M., Radomyslskaya T. M., Savchenko V. V. Visibility of oil films on the water surface from space // Fundam. prikl. gidrofiz. 2012. V. 5, N 3. P. 75—84.

32. Levin I. M., Radomyslskaya T. M. et al. Possibility of oil film detection on the ice cover of the sea surface // Proceedings of the Thirty-second Arctic and Marine Oil Spill Program (AMOP) Technical on Environmental Contamination and Response. Edmonton, Alberta. Canada. June 9—11. 2009. V. 2. P. 781—789.

33. Radomyslskaya T. M. Oil film detection on the ice cover of the sea surface // VII International Conference «Current Problems in Optics of Natural Waters» (ONW 2013). St.-Petersburg. 2013. P. 195—198.

34. Dolin L. S., Luchinin A. G., Titov V. I., Turlaev D. G. Correcting images of underwater objects distorted by sea surface roughness. Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters. Proc. SPIE. 2007. V. 6615, 66150K. 12 p.

35. Turlaev D. G., Dolin L. S. On imaging of underwater objects though a rough water surface: a new algorithm of image correction and a laboratory experiment // Izv. Atmos. Ocean. Phys. 2013. V. 49, N 3. P. 370—376.

36. Levin I., Savchenko V., Osadchy V. Correction of an image distorted by a wavy water surface: laboratory experiment // Applied Optics. 2008. V. 47, N 35. P. 6650—6655.

37. Molkov A. А., Dolin L. S. Determining the wind wave parameters by an underwater image of the sea surface // Izv. Atmos. Ocean. Phys. 2012. V. 48, N 5. P. 617—630.


Review

For citations:


Dolin L.S., Levin I.M. Theory of Underwater Imaging. Fundamental and Applied Hydrophysics. 2015;8(2):22-35. (In Russ.)

Views: 187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)