Algorithms of Determination Spectral-energy Characteristics of the Internal Wave’s Random Field by Lidar Returned Signals
https://doi.org/10.7868/S2073667318030061
Abstract
The possibility of measuring the frequency-angular spectra of the mode components of random field of small amplitude pycnoclinic internal waves by lidar method is theoretically investigated. Algorithms are proposed for reconstructing the spectra of internal waves from the measured relative power fluctuation spectra of the lidar return signal if the Vaisala frequency and the inherent optical properties profiles are known. It is shown that under certain conditions the frequency-angular spectrum of fluctuations in the power of the return signal arriving from a given depth is represented as a superposition of the frequency-angular spectra of the mode components of the internal wave’s field with weight factors that depend on the inherent optical properties profiles and the vertical mode structure. Therefore, the spectrum of a single-mode internal wave’s field can be determined from the return signal fluctuations from one properly chosen depth, and the multimode field spectrum from signals from several different depths, the number of which should not be less than the number of modes. Formulas for estimating the errors in the determination of the internal wave’s spectrum due to the error in measuring the spectrum of return signal fluctuations, as well as the errors in specifying the unperturbed profile of the light attenuation coefficient and the function characterizing the vertical structure of the mode are presented. The procedure for reconstructing the spectra of the two-mode field is illustrated by a numerical experiment using real hydrological and hydro-optical data obtained in one of the regions of the Barents Sea.
About the Authors
I. S. DolinaRussian Federation
Nizhny Novgorod
L. S. Dolin
Russian Federation
Nizhny Novgorod
References
1. Walker R. E., Fraser A. B., Mastracci L., Hochheimer B. F. Optical sounding for internal waves on the ocean thermocline. Oceans 82 Conference Record, 20—22 September 1982 (Washington, DC: American Geophisical Union). P. 247—250.
2. Bravo-Zhivotovskii D. M., Dolin L. S., Savel’ev V. A. et al. Optical methods for ocean diagnostics. Laser remote sensing. Remote methods for ocean studies. Gorky, IAP AN USSR, 1987. P. 84—125 (in Russian).
3. Hoge F. E., Wright C. W., Krabill W. B., Buntzen R. R., Gilbert G. D., Swift R. N., Yungel J. K., Berry R. E. Airborne lidar detection of subsurface oceanic scattering layers. Applied Optics. 1988, 27, 19, 3969—3977.
4. Vasilkov P. A., Goldin Y. A., Gureev B. A., Hoge R. F., Swift R. N., Wright C. W. Airborn polarized lidar detection of scattering layers in the ocean. Applied Optics. 2001, 40, 24, 4353—4364.
5. Churnside J. H., Ostrovsky L. A. Lidar observation of a strongly nonlinear wave train in the Gulf of Alaska. Int. Journ. of Remote Sensing. 2005, 26, 1, 167—177.
6. Churnside J. H, Marchbanks R. D., Lee J. H., Shaw J. A., Weidemann A., Donaghay P. L. Airborne lidar detection and characterization of internal waves in a shallow fjord. J. Appl. Remote Sens. 6(1), 063611 (Dec 05, 2012). doi:10.1117/1.JRS.6.063611
7. Dolin L. S., Dolina I. S., Savel’ev V. A. The model of lidar images of internal waves. Proceed. 4 Intern. Conf. “Current Problems in Optics of Natural Waters” (ONW’2007), N. Novgorod, Russia, 2007, Sept. 11—15, 124—128.
8. Dolina I. S., Dolin L. S., Levin I. M., Rodionov A. A., Savel’ev V. A. Inverse problems of lidar sensing of the ocean. “Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters”. Proceeding of SPIE, 2007, 6615, 66150C — 1—10.
9. Dolin L. S., Dolina I. S., Savel’ev V. A. A Lidar Method for Determining Internal Wave Characteristics. Izv., Atmos. Ocean. Phys. 2012, 48, 4, 444—453.
10. Dolina I. S., Dolin L. S. Simulation of lidar images of nonlinear internal waves in the shallow sea. Fundamentalnaya i Prikladnaya Gidrofizika. 2017, 10, 1, 31—36.
11. Levin I. M, Kopelevich O. V. Correlations between the Inherent Hydrooptical Characteristics in the spectral range close to 550 nm. Oceanology. 2007, 47, 3, 344—349.
12. Miropol'sky Yu. Z. Dynamics of internal gravity waves in the ocean. Dordrecht, Kluwer Acad. Publ., 2001.
13. Laikhtman D. L., Leonov A. I., Miropol'sky Yu. Z. On the interpretation of the measurements of the scalar field statistical characteristics in the ocean with presence of the internal gravity waves. Izv., Atmos. Ocean. Phys. 1971, 7, 4, 447—454 (in Russian).
14. Laikhtman D. L., Leonov A. I., Miropol'sky Yu. Z. The determination of the scalar field statistical characteristics in the ocean in the presence of the internal gravity waves. Izv., Atmos. Ocean. Phys. 1971, 7, 6, 638—647 (in Russian).
15. History of Systematic Oceanographic Studies in the Arctic. Ed. by A. L. Lisitsyn, M. E. Vinogradov, and E. A. Romankevich. Nauchnyi mir, Moscow, 2001 (in Russian).
16. Gossard E. E., Hooke W. H. Waves in the atmosphere. Elsevier, New York, 1975.
Review
For citations:
Dolina I.S., Dolin L.S. Algorithms of Determination Spectral-energy Characteristics of the Internal Wave’s Random Field by Lidar Returned Signals. Fundamental and Applied Hydrophysics. 2018;11(3):47-54. (In Russ.) https://doi.org/10.7868/S2073667318030061