Preview

Fundamental and Applied Hydrophysics

Advanced search

Modelling of coastal dynamics generated by landslide

Abstract

Landslide dynamics is considered in the framework of a two-layer system involving water and landslide material. The problem is formulated both in the Cartesian coordinates and in a generalized form relying on curvilinear boundaryfitted coordinates. An essential element of landslide dynamics is the account for nonhydrostatic pressure component defined by the solution of the nonlinear dispersive Boussinesq equation. A numerical implementation for curvilinear coordinates uses the second-order difference splitting scheme with restriction on the grid size only imposed by advection, and includes a module for computing draining in the shallow zone. The results of extensive series of numerical experiments simulating changing physical and energetic characteristics of landslide in function of slope angle are presented together with modeling results for coastal wave dynamics generated by a landslide as well as estimation of the impact of nonhydrostatic effects. The model is verified by comparing its simulation results with the results of laboratory experiments for three events: a tsunami wave at the Japan coast, wave passage over a submarine barrier and a gravity wave generated by a landslide. As a practical model application simulations of the flow generated by the Alaska mega-landslide (1958) are presented.

About the Authors

N. E. Voltzinger
Saint-Petersburg Branch of the P.P.Shirshov Institute of Oceanology of RAS
Russian Federation


A. A. Androsov
Saint-Petersburg Branch of the P.P.Shirshov Institute of Oceanology of RAS; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
Germany

Bremerhaven



References

1. Pelinovsky E., Poplavsky A. Simplified model of tsunami generation by submarine landslides // Phys. Chem. Earth. 1996. V. 21. P. 13–17. doi:10.1016/S0079-1946(97)00003-7.

2. Jiang L., LeBlond P. H. The coupling of a submarine slide and the surface waves which it generates // J. Geophys. Res. 1992. V. 97(C8). P. 12,731–12,744. doi:10.1029/92JC00912.

3. Watts P., Grilli S. T., Kirby J. T., Fryer G. J., Tappin D. R. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model // Natural Hazards and Earth Syst. Sc. 2003. V. 3. P. 391–402.

4. Khakimzyanov G. S., Shokina N. Y. Numerical modelling of surface water waves arising due to a movement of the underwater landslide on an irregular bottom // Comput. Technol. 2010. V. 15. P. 105–119.

5. Chubarov L. B., Eletsky S. V., Fedotova Z. I., Khakimzyanov G. S. Simulation of surface waves generation by an underwater landslide // Russian Journal of Numerical Analysis and Mathematical Modelling. 2005. V. 20(5). P. 425–437.

6. Chubarov L. B., Khakimzyanov G. S., Shokina N. Yu. Numerical modelling of surface water waves arising due to movement of underwater landslide on irregular bottom slope // E. Krause et al. (Eds.): Comp. Science & High Perf. Computing IV, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer-Verlag Berlin Heidelberg, 2011. V. 115. P. 75–91.

7. Beizel S. A., Chubarov L. B., Dutykh D., Khakimzyanov G. S., Shokina N. Yu. Simulation of surface waves generated by an underwater landslide in a bounded reservoir // Russian Journal of Numerical Analysis and Mathematical Modelling. VNU Science Press BV, 2012. V. 27(6). P. 539–558.

8. Didenkulova I., Pelinovsky E., Rodin A. Formation of Shallow Water Rogue Waves Taking ‎into Account Wave Breaking Effects. Fundam. prikl. gidrofiz. 2012, 5(1), 89—98 (in Russian).

9. Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars // Mon. Not. R. Astr. Soc. 1977. V. 181. P. 375–389.

10. Panizzo A., Cuomo G., Dalrymple R. A. 3D-SPH simulation of landslide generated waves // Proc. 30th International Conference on Coastal Engineering. 2006.

11. Heinrich P. Nonlinear water-waves generated by submarine and aerial landslides // J. Waterw Port Coast Ocean Eng. 1992. V. 18(3). P. 249–266.

12. Quecedo M., Pastor M., Herreros M. I. Numerical modeling of impulse wave generated by fast landslides // Int. J. Numer. Methods Eng. 2004. V. 59. P. 1633–1656.

13. Abadie S., Morichon D., Grilli S., Glockner S. A three fluid model to simulate waves generated by subaerial landslides // Coastal Engineering. 2010. V. 57(9). P. 779–794.

14. Lynett P. and Liu P.F. A numerical study of the runup generated by three-dimensional landslides // J. Geophys. Res. 110(C03006) DOI 10.1029/2004JC002443.

15. Androsov A. A., Voltzinger N. E. The World Ocean passages — general approach to modeling. SPb., Nauka, 2005. 188 p.

16. Gustafsson B., Sundström A. Incompletely parabolic problems in fluid dynamics // SIAM J. Appl. Math. 1978. V. 32, № 2. P. 343–357.

17. Thompson J. F., Wazsi Z.U.A., Mastin C. W. Numerical grid generation: foundation and application. North-Holl, 1985. 483 p.

18. Matsuyama M., Tanaka H. An experimental study of the highest runup height in the 1993 Hokkaido Nansei-oki earthquake tsunami // U.S. National Tsunami Hazard Mitigation Program Review and International Tsunami Symposium (ITS). Seattle, Washington 7–10 August 2001. U.S. National Tsunami Hazard Mitigation Program. V. 7(21). P. 879–889.

19. Beji S., Battjes J. A. Experimental investigation of wave propagation over a bar // Coastal Eng. 1993. V. 19. P. 151–162.

20. Heller V. Landslide generated impulse waves — Prediction of near field characteristics. PhD Thesis 17531, ETH Zurich, Zurich. 2007. (http://e-collection.ethbib.ethz.ch/view/eth:30012).

21. Fritz H. M., Hager W. H., Minor H.-E. Lituya Bay case: Rockslide impact and wave run-up // Sci. Tsunami Hazards. 2001. V. 19(1). P. 3–22.

22. Slingerland R. L., Voight B. Occurrences, properties and predictive models of landslide-generated impulse waves // Rockslides and Avalanches. 2, 317–397 (Ed. Voight B.) Developments in Geotechnical Engin. 14B. Elsevier, Amsterdam, 1979.


Review

For citations:


Voltzinger N.E., Androsov A.A. Modelling of coastal dynamics generated by landslide. Fundamental and Applied Hydrophysics. 2015;8(2):10-21. (In Russ.)

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)