Preview

Fundamental and Applied Hydrophysics

Advanced search

High-resolving modeling of the surface resulting circulation in the Kara Sea its barotropic and baroclinic constituents and the role of tides in their formation

https://doi.org/10.7868/S2073667318020090

Abstract

The present modeling results support a view that the surface resulting circulation of waters in the Kara Sea is cyclonic, including one large-scale gyre in the south-western part of the Sea, one mesoscale gyre in the eastern part of the Sea and differently directed currents in the southern, central and northern parts of the Sea. The use of a high-resolving grid allows to reveal two mesoscale gyres in the south-western part of the Sea and an additional six mesoscale gyres having a different direction of rotation in the remaining part of the Sea. A comparison of two solutions performed, obtained for the overall (tidal + wind+ thermohaline) and combined (wind + thermohaline) forcing allows to quantify a contribution of tides to the formation of surface resulting circulation of waters. It turns out that tides introduce detectable changes in this circulation which origin is assumed to owe to wind and thermohaline factors.

About the Authors

B. A. Kagan
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Moscow



E. V. Sofina
Shirshov Institute of Oceanology, Russian Academy of Sciences; Russian State Hydrometeorological University
Russian Federation

Moscow; St.-Petersburg



References

1. Добровольский А. Д., Залогин Б. С. Моря СССР. М.: Изд-во МГУ, 1982, 192 с.

2. Pavlov V. K., Phirman S. L. Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution // Deep Sea Res. 1995. V. 42, N 6. P. 1369—1390.

3. Ip J.T.C., Lynch D. R. QUODDY-3 User's manual: Comprehensive coastal circulation simulation using finite elements: Nonlinear prognostic time-stepping model. Report Number NML 95–1, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 1995, 45 p.

4. Rio M. H., Guinehut S., Larnicol G. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements // J. Geophys. Res. 2011. V. 116. № С07018. doi:10.1029/2010JC006505.

5. Joint US-RussianAtlas of theArctic Ocean, OceanographyAtlas for the Summer Period. (Tanis E., Timokhov L., eds.) Environmental Working Group, University of Colorado, Media Digital, 1998.

6. Jayne S. R. The impact of abyssal mixing parameterizations in an ocean general model // J. Phys. Oceanogr. 2009. V. 39, N 7. P. 1756—1775.

7. Kistler R. et al. The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation // Bull. Amer. Meteor. Soc. 2001. V. 82. P. 247–267.

8. Padman L., Erofeeva S. A barotropic inverse tidal model for the Arctic Ocean // Geophys. Res. Let. 2004. V. 31. doi: 1029/2003GL019003.

9. International Bathymetric Chart of the Arctic Ocean / National Geophysical Data Center.–Boulder, Co. USA: NGDC, 2008: http://www.ibcao.org/ (дата обращения: 20.08.2015).

10. Smagorinsky J. General circulation experiments with the primitive equations // Month. Weather Rev. 1963. V. 91. P. 99—164.

11. Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. Space Phys. 1982. V. 20, N 4. P. 854—875.

12. Каган Б. А., Тимофеев А. А. Моделирование поверхностных и внутренних полусуточных приливов в Карском море // Изв. РАН, Физика атмосферы и океана. 2017. Т. 53, № 2. С. 265—275.


Review

For citations:


Kagan B.A., Sofina E.V. High-resolving modeling of the surface resulting circulation in the Kara Sea its barotropic and baroclinic constituents and the role of tides in their formation. Fundamental and Applied Hydrophysics. 2018;11(2):103-107. (In Russ.) https://doi.org/10.7868/S2073667318020090

Views: 134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)