Mitigation measures of coastal erosion on the Kotlin Island’s shores in the Gulf of Finland, the Baltic Sea
https://doi.org/10.7868/S207366731802003X
Abstract
The intense erosion of shores of the Kotlin Island in the Gulf of Finland during the last 70 years can lead to the complete disappearance of sandy beaches of the western Kotlin Island in the near future. We assess the intensity of the coastal erosion of the western Kotlin Island and propose the method of artificial sand nourishment in order to maintain the sandy beaches. The geological near-shore and onshore surveys revealed the following features of the western Kotlin Island coastal zone: 1) significant sediment deficit; 2) small (about 30 cm) thickness of the active sand layer, 3) predominance of narrow (10—15 m) sand beaches and 4) low and smooth offshore and onshore topography. The parameters of artificial beaches are determined by coupling the models of water circulation, waves, and sediment dynamics. Calculations of currents and waves were performed using a three-dimensional hydrodynamic model of the eastern Gulf of Finland and the SWAN wave model, respectively. The coast deformation due to storms was calculated using the CROSS-P model. Initial data were the existing depth profile, sediment characteristics, wind properties, wave parameters, the height of storm surges, and the duration of a storm. The actual external forcing (atmospheric forcing from the HIRLAM model, open boundary conditions from the HIROMB model, and bathymetry and topography of the beach obtained from geological surveys) is given, the parameters of artificial beach profiles have been calculated to withstand the maximum storm surge, and the annual volume of sand necessary for the conservation of the artificial beaches has been estimated.
Keywords
About the Authors
V. A. RyabchenkoRussian Federation
Moscow
I. O. Leontyev
Russian Federation
Moscow
D. V. Ryabchuk
Russian Federation
St.-Petersburg
A. Yu. Sergeev
Russian Federation
St.-Petersburg
A. Yu. Dvornikov
Russian Federation
Moscow
S. D. Martyanov
Russian Federation
Moscow
V. A. Zhamoida
Russian Federation
St.-Petersburg
References
1. Hanson H. GENESIS: a generalized shoreline change numerical model // J. of Coastal Res. 1989. V. 5, N 1. P. 1—27.
2. Dean R. G. Beach Nourishment: Theory and Practice. World Scientific Inc., 2002. 399 p.
3. Van Rijn L. C. et al. Numerical modeling of erosion and accretion of plane sloping beaches at different scales // Coastal Engineering. 2011. V. 58. P. 637—655.
4. Leont’yev I. O. Morphodynamic Processes in the Coastal Zone of the Sea. Saarbrücken: LAP LAMBERT Academic Publishing, 2014. 251 p.
5. Ryabchuk D. et al. Long term and short term coastal line changes of the Eastern Gulf of Finland. Problems of coastal erosion // Journal of Coastal Conservation. 2012. V. 16, N 3, P. 233—242.
6. Van Rijn L. C. et al. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and season using process-based profile models // Coastal Engineering. 2003. V. 47. P. 295—327.
7. Roelvink D. et al. Modelling storm impacts on beaches, dunes and barrier islands // Coastal Engineering. 2009. V. 56. P. 1133—1152.
8. Романовский С. И. Физическая седиментология. Ленинград: «Недра», 1988. 239 с.
9. Ryabchenko V. et al. Modelling ice conditions in the easternmost Gulf of Finland in the Baltic Sea // Continental Shelf Research. 2010. V. 30. P. 1458—1471. Doi: 10.1016/j.csr.2010.05.006
10. Рябченко В. А., Коноплев В. Н., Кондратьев С. А., Поздняков Ш. Р., Лыскова У. С. Оценка изменения качества воды Невской губы после введения в эксплуатацию Юго-западных очистных сооружений Санкт-Петербурга (по данным математического моделирования) // Изв. Русского Географического Общества. 2006. Т. 138, Вып. 5. С. 48—57.
11. Андреев П. Н., Дворников А. Ю., Рябченко В. А., Цепелев В. Ю., Смирнов К. Г. Воспроизведение штормовых нагонов в Невской губе на основе трехмерной модели циркуляции в условиях маневрирования затворами Комплекса Защитных Сооружений // Фундаментальная и прикладная гидрофизика. 2013. Т. 6, № 4. С. 23—31.
12. Blumberg A. F., Mellor G. L. A description of a three-dimensional coastal ocean circulation model. / Heaps N. (Ed.), Three-dimensional Coastal Ocean Models. American Geophysical Union, 1987. P. 208.
13. Booij N. et al. A third-generation wave model for coastal regions, Part 1. Model description and validation // Journal of Geophysical Research. 1999. V. 104 (C4). P. 7649—7666.
14. Ris R. C. et al. A third-generation wave model for coastal regions, Part 2. Verification // Journal of Geophysical Research. 1999. V. 104 (C4). P. 7667—7681.
15. Martyanov S., Ryabchenko V. Bottom sediment resuspension in the easternmost Gulf of Finland in the Baltic Sea: A case study based on three–dimensional modeling // Cont. Shelf Res. 2016. V. 117. P. 126—137. Doi: http://dx.doi.org/10.1016/j.csr.2016.02.011
16. Bagnold R. A. Mechanics of marine sedimentation // The Sea. V. 3. N.Y.: J. Wiley, 1963. P. 507—528.
17. Bowen A. J. Simple models of nearshore sedimentation; beach profiles and longshore bars // Coastline of Canada. Geol. Surv. Can. Halifax, 1980. P. 1—11.
18. Leont’yev I. O. Coastal Dynamics: Waves, Currents, Sediment Transport. М.: GEOS, 2001. 272 p.
19. Leont’yev I. O. Modeling the morphological response in a coastal zone for different temporal scales // Advances in Coastal Modeling / Ed V. C. Lakhan. Amsterdam, The Netherlands: Elsevier Science Publishers, 2003. P. 299—335.
20. Leont’yev I. O. Calculation of Longshore Sediment Transport // Oceanology. 2014a. V. 54, N 2. P. 226—232.
21. Leont’yev I. O. et al. Modeling of Storm-Induced Deformations of a Sandy Coast (Based on the Example of the Eastern Gulf of Finland) // Oceanology. 2015. V. 55, N 1. P. 131—141.
22. Leont’yev I. O. et al. The Forecast of Coastal Recession in the Eastern Gulf of Finland for the Twenty-First Century // Oceanology. 2015a. V. 55, N 3. P. 434—440.
23. Leont’yev Igor, Akivis Tatiana. An artificial beach as a means for sea coast protection from storm surges (by the example of the Eastern Gulf of Finland) // Proc. of Int. Conf. “Managing risks to coastal regions and communities in changing world” (EMECS’11 – Sea Coasts XXVI). 2017.
24. URL:https://www.google.com/url?q=https%3A%2F%2Fdoi.org%2F10.21610%2Fconferencearticle_58b4315f8fc73&sa=D&sntz=1&usg=AFQjCNGPEkTFBEreOx2JE-ApS5YELG6ahg (Дата обращения: 20.04.18).
25. Geological Atlas of St. Petersburg. / Eds.: Filippov N. B., Spiridonov M. A. Comilfo, 2009. 57 p.
26. Atlas of geological and geoecological maps of the Russian part of the Baltic Sea. / Ed. Petrov O. V. SPb.: VSEGEI, 2010. 78 p.
27. Harff J., Meyer M. Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: Examples from the southern Baltic // J. Harff, S. Björck, P. Hoth, eds., The Baltic Sea Basin. Berlin, Heidelberg: Springer, 2011. P. 149—164.
28. Гордеева С. М., Малинин В. Н. Изменчивость морского уровня Финского залива. СПб.: РГГМУ, 2014. 179 с.
29. Funkquist L. HIROMB, an operational eddy-resolving model for the Baltic Sea // Bulletin of the Maritime Institute in Gdansk. 2001. V. 28, N 2. P. 7—16.
30. Körnich H., Berggren L. Joint WMO technical progress report on the global data processing and forecasting system and numerical weather prediction research activities for 2013. SMHI, 2013.
31. URL: https://www.wmo.int/pages/prog/www/DPFS/ProgressReports/2013/documents/2013_Sweden.doc (Дата обращения: 20.04.18).
32. Hunt I. A. Design of Seawalls and Breakwaters // J. of Waterway and Harbors Div. 1959. V. 85. P. 123—152.
33. Sunamura T. Sandy Beach Geomorphology Elucidated by Laboratory Modeling / Coastal Modeling: Techniques and Applications. Lakhan V. C., Trenhail A. S. (Eds). Elsevier, Amsterdam, 1989. P. 159—213.
Review
For citations:
Ryabchenko V.A., Leontyev I.O., Ryabchuk D.V., Sergeev A.Yu., Dvornikov A.Yu., Martyanov S.D., Zhamoida V.A. Mitigation measures of coastal erosion on the Kotlin Island’s shores in the Gulf of Finland, the Baltic Sea. Fundamental and Applied Hydrophysics. 2018;11(2):36-50. https://doi.org/10.7868/S207366731802003X