Preview

Fundamental and Applied Hydrophysics

Advanced search

Modelling of Internal Waves in the Baltic Sea

https://doi.org/10.7868/S2073667318020016

Abstract

A brief review of recent studies of internal waves in the Baltic Sea is given. The data of various observations of internal waves in the Baltic region are discussed and a database for the background hydrological parameters that govern the basic appearance of the internal wave shape is introduced. These data sets are employed to select examples of pathways of wave propagation that contain critical points. Numerical modeling of propagation of internal solitary waves across the sea is carried out using the relatively simple model based on Gardner’s equation. This model was chosen due to its clear advantages. It is robust, allows high-resolution calculations with modest computer resources, and is able to reproduce the transformation of internal waves in horizontally inhomogeneous sea. The results of calculations of the transformation of internal solitons in the Baltic Sea along such pathways in a realistic (spatially variable) set of hydrological conditions are presented.

About the Authors

E. N. Pelinovsky
Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Nizhny Novgorod



T. G. Talipova
Nizhny Novgorod State Technical University n.a. R.E. Alekseev; Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

Nizhny Novgorod



T. Soomere
Department of Cybernetics, School of Science, Tallinn University of Technology; Estonian Academy of Sciences
Estonia

Tallinn



O. E. Kurkina
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Nizhny Novgorod



A. A. Kurkin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Nizhny Novgorod



D. Yu. Tyugin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Nizhny Novgorod



References

1. Alenius P., Myrberg K., Nekrasov A. The physical oceanography of the Gulf of Finland: a review // Boreal Environ. Res. 1998. V. 3. P. 97—125.

2. Митягина М. И., Лаврова О. Ю. Спутниковые наблюдения поверхностных проявлений внутренних волн в морях без приливов // Современные проблемы дистанционного зондирования Земли из космоса. 2010. Т. 7, № 1. С. 260—272.

3. Митягина М. И., Лаврова О. Ю. Спутниковые наблюдения вихревых и волновых процессов в прибрежной зоне северо-восточной части Черного моря // Исследование земли из космоса. 2009. № 5. С. 72—79.

4. Лаврова О. Ю., Митягина М. И., Сабинин К. Д. Проявление внутренних волн на морской поверхности в северо-восточной части Черного моря // Исследование Земли из космоса. 2009. № 6. С. 49—55.

5. Лаврова О. Ю., Каримова С. С., Митягина М. И, Бочарова Т. Ю. Оперативный спутниковый мониторинг акваторий Черного, Балтийского и Каспийского морей в 2009—2010 годах // Современные проблемы дистанционного зондирования Земли из космоса. 2010. Т. 7, № 3. С. 168—185.

6. Kurkina O., Pelinovsky E., Talipova T., Soomere T. Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water // Journal of Coastal Research. 2011. Special Issue 64, v. II. P. 2042—2047.

7. Grimshaw R., Talipova T., Pelinovsky E., Kurkina O. Internal solitary waves: propagation, deformation and disintegration // Nonlin. Processes Geophys. 2010. V. 17. P. 633—649.

8. Talipova T. G., Pelinovsky E. N., Kurkin A. A., Kurkina O. E. Modeling the dynamics of intense internal waves on the shelf // Izvestiya — Atmospheric and Ocean Physics. 2014. V. 50, Iss. 6. P. 630—637.

9. Kurkina O., Rouvinskaya E., Talipova T., Soomere T. Propagation regimes and populations of internal waves in the Mediterranean Sea basin // Estuarine, Coastal and Shelf Science. 2017. V. 185. P. 44—54.

10. Leppäranta M., Myrberg K. Physical oceanography of the Baltic Sea. Praxis, Berlin, Heidelberg, New York: Springer. 2009.

11. Axell L. Wind-driven internal waves and Langmuir circulation in a numerical ocean of the Baltic Sea // Journal of Geophysical Research. 2002. V. 107 (C1). Art. No. 3204.

12. Feistel R., Nausch G., Wasmund N. (Eds.) State and evolution of the Baltic Sea, 1952—2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley & Sons, Inc. 2008.

13. Van der Lee E. M., Umlauf L. Internal wave mixing in the Baltic Sea: near-inertial waves in the absence of tide // Journal of Geophysical Research. 2011. V. 116. P. C10016-1-16.

14. Lilover M.-J. Tidal currents as estimated from ADCP measurements in „practically non-tidal” Baltic Sea // Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Present and Future. Climate Change Research, Ocean Observation & Advanced Technologies for Regional Sustainability,” May 8—11, Klaipėda, Lithuania, IEEE; 2012. P. 1—4.

15. Ivanov V. A., Lisichenok A. D., Nemirovsky M. S. Excitation of short-period internal waves by wind pulsations // Izvestiya — Atmospheric and Ocean Physics. 1987. V. 23, N 2. Р. 179—185.

16. Vlasenko V. I., Ivanov V. A., Krasin I. G., Lisichenok A. D. The generation of intensive short-period internal waves in the frontal zone of a coastal upwelling // Phys. Oceanogr. 1998. V. 9, Iss. 3. Р. 155—168.

17. Ivanov V. A., Lisichenok A. D. Internal waves in the shelf zone and near the shelf edge in the Black Sea // Phys. Oceanogr. 2002. V. 6. Р. 353—360.

18. Lavrova O. Yu., Mityagina M. I., Sabinin K. D., Serebryany A. N. Satellite Observations of Surface Manifestations of Internal Waves in the Caspian Sea // Izvestiya — Atmospheric and Ocean Physics. 2011. V. 47, N 9. P. 1119—1126.

19. Meier H.E.M., Döscher R., Faxén T. A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow // J. Geophys. Res. 2003. V. 108(C8). Art. No. 3273.

20. Meier H.E.M. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea // Estuar. Coast. Shelf Sci. 2007. V. 74. Р. 717—734.

21. Soomere T., Delpeche N., Viikmäe B., Quak E., Meier H.E.M., Döös K. Patterns of current-induced transport in the surface layer of the Gulf of Finland // Boreal Environ. Res. 2011. V. 16, Iss. 1. Р. 1—21.

22. Chernysheva E. S. On the modeling of long internal waves // Davidan I. N. et al. (eds.), Problems of the Studies and Mathematical Modeling of the Baltic Sea Ecosystem. Modeling of the Ecosystem Components Issue No. 3, Leningrad, Gidrometeoizdat, 1987. P. 50—54.

23. Kol’chitskii N. N., Monin A. S., Paka V. T. On internal seiches in the deep Baltic Sea // Doklady Akademii Nauk. 1996. V. 346, N 2. P. 249—255.

24. Голенко Н. Н., Мельников В. А. Оценка пространстве-временных параметров поля внутренних волн в юго-западной части Балтийского моря с помощью данных полученных буксируемым зондом // Научные доклады Российского географического союза (Калининградская область), Российский государственный университет, Калининград, 2007. Т. 5. С. С1—С4.

25. Kurkina O. E., Kurkin A. A., Dorokhov D. V., Gorbatsky V. V., Morozov E. G., Pankratov A. S. Distribution, vertical structure and seasonal variability of horizontal currents near the Curonian Spit in south-eastern Baltic Sea in 2010 // Book of Abstracts of 8th Baltic Sea Science Congress (22—26, August 2011, St.-Petersburg, Russia); 2011b. P. 272.

26. Talipova T. G., Pelinovsky E. N., Kharif Ch. Modulation instability of long internal waves with moderate amplitudes in a stratified horizontally inhomogeneous ocean // JETP Letters. 2011. V. 94, Iss. 3. P. 182—186.

27. Rouvinskaya E., Talipova Т., Kurkina O., Soomere T., Tyugin D. Transformation of internal breathers in the idealised shelf sea conditions // Continental Shelf Research. 2015. V. 110. P. 60—71.

28. Pelinovsky E., Polukhina O., Slunyaev A., Talipova T. Internal solitary waves // Solitary Waves in Fluids. Chapter 4. WIT Press. Southampton, Boston. 2007. P. 85—110.


Review

For citations:


Pelinovsky E.N., Talipova T.G., Soomere T., Kurkina O.E., Kurkin A.A., Tyugin D.Yu. Modelling of Internal Waves in the Baltic Sea. Fundamental and Applied Hydrophysics. 2018;11(2):8-20. https://doi.org/10.7868/S2073667318020016

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)