Preview

Fundamental and Applied Hydrophysics

Advanced search

Modelling the spring-summer evolution of the thermohaline structure in the Gulf of Finland on the basis of a three-dimensional hydrodynamic model of high resolution

Abstract

To improve the quality of simulation of thermohaline structure in the Gulf of Finland a three-dimensional hydrodynamic model is proposed. It is based on the model complex NEMO (Nucleus for European Modelling of the Ocean). Angular steps of the model grid on latitude and longitude are, respectively 0.25 and 0.5' (≈ 0.5 km), that is 4–8 times less than the value of the baroclinic Rossby deformation radius in the Gulf of Finland. Vertical turbulent exchange is described using a turbulent closure scheme of k-ε type. The calculation results are compared with contact measurements of temperature and salinity obtained using CTD probe at 38 stations in the expedition of the Russian State Hydrometeorological University in the eastern Gulf of Finland in the period from 25 to 28 July, 2011 and data CTD probe (15 stations) for the summer period, 2011 from the BED (Baltic Environment Database). Calculated sea surface temperature is also compared with its satellite estimates, having a resolution of 1×1 km and obtained by the Moderate-resolution Imaging Spectroradiometer (MODIS). It is shown that the choice of the appropriate scheme of turbulent closure and implementation of the model on the grid of high-resolution (≈ 0.5 km) led to significant improvement (compared with the calculations on a coarse grid) of the quality of simulation of temperature in the spring-summer period.

About the Authors

R. E. Vankevich
Saint-Petersburg Branch of the P. P. Shirshov Institute of Oceanology of RAS; Russian State Hydrometeorological University
Russian Federation

Saint-Petersburg



E. V. Sofina
Saint-Petersburg Branch of the P. P. Shirshov Institute of Oceanology of RAS; Russian State Hydrometeorological University
Russian Federation

Saint-Petersburg



V. A. Ryabchenko
Saint-Petersburg Branch of the P. P. Shirshov Institute of Oceanology of RAS
Russian Federation


References

1. Rantajarvi E., Gran V., Hällfors S., Olsonen R. Effects of environmental factors on the phytoplankton community in the Gulf of Finland — unattended high frequency measurements and multivariate analyses // Hydrobiologia. 1998. V. 363. P. 127–139.

2. Lips U., Lips I., Liblik T., Kuvaldina N. Processes responsible for the formation and maintenance of sub-surface chlorophyll maxima in the Gulf of Finland // Estuar. Coast Shelf Sci. 2010. V. 88. P. 339–349.

3. Lips U., Lips I., Liblik T., Elken J. Estuarine transport versus vertical movement and mixing of water masses in the Gulf of Finland (Baltic Sea) // US/EU-Baltic International Simposium. 2008. P. 1–8. doi:10.1109/BALTIC.2008.4625535.

4. Stepputtis D., Hinrichsen H. H., Bottcher U., Gotze E., Mohrholz V. An example of meso-scale hydrographic features in the Central Baltic Sea and their influence on the distribution and vertical migration of sprat, Sprattus sprattus balticus (Schn.) // Fish. Oceanogr. 2011. V. 20, N 1. P. 82–88.

5. Laine A. O., Andersin A. B., Leinio S., Zuur A. F. Stratification-induced hypoxia as a structuring factor of macrozoobenthos in the open Gulf of Finland (Baltic Sea) // J. Sea Res. 2007. V. 57, N 1. P. 65–77.

6. Maximov A. A. Causes of the Bottom Hypoxia in the Eastern Part of the Gulf of Finland in the Baltic Sea. Oceanology. 2006, 46, 2, 204–210.

7. Myrberg K., Ryabchenko V., Isaev A., Vankevich R., Andrejev O. et al. Validation of three-dimensional hydrodynamic models of the Gulf of Finland // Boreal Env. Res. 2010. V. 15. P. 453–479.

8. Tuomi L., Myrberg K., Lehmann A. The performance of the parameterisations of vertical turbulence in the 3D modelling of hydrodynamics in the Baltic Sea // Cont. Shelf Res. 2012. V. 50–51. P. 64–79. doi:10.1016/j.csr.2012.08.007.

9. Andrejev O., Myrberg K., Alenius P., Lundberg P. A. Mean circulation and water exchange in the Gulf of Finland — a study based on three-dimensional modeling // Boreal Environ Res. 2004. V. 9, N 1. P. 1–16.

10. Andrejev O., Sokolov A., Soomere T., Värv R., Viikmäe B. The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland // Estonian J. Engin. 2010. V. 16, N 3. P. 187–210.

11. Myrberg K. Sensitivity tests of a two-layer hydrodynamic model in the Gulf of Finland with different atmospheric forcings // Geophysica. 1997. V. 33, N 2. P. 69–98.

12. Myrberg K. Analysing and modeling the physical processes of the Gulf of Finland in the Baltic Sea // Monographs of the Boreal Environment Research. 1998. V. 10. 50 p.

13. Neelov I. A., Eremina T. R., Isaev A. V., Ryabchenko V. A., Savchuk O. P., Vankevich R. E. A simulation of the Gulf of Finland ecosystem with a 3D model // Proc. Estonian Acad. Sci.Biol.Ecol. 2003. V. 52, N 3. P. 346–359.

14. Sokolov A. Modelling of submesoscale dynamics in the Gulf of Finland (Baltic Sea) // Geophys. Res. Abstracts. 2013. V. 15. EGU2013-9646.

15. Soomere T., Myrberg K., Leppäranta M., Nekrasov A. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007 // Oceanologia. 2008. V. 50, N 3. P. 287–362.

16. Tuomi L., Myrberg K., Lehmann A. The performance of different vertical turbulence parameterizations in modelling the development of the seasonal thermocline in the Gulf of Finland // Geophys. Res. Abstracts. 2013. V. 15. EGU2013-8229.

17. Zhurbas V., Laanemets J., Vahtera E. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea // J. Geophys. Res. 2008. V. 113(C05004). doi:10.1029/2007JC004280.

18. Gent P. R., McWilliams J. C. Isopycnal mixing in ocean circulation models // J. Phys. Ocean. 1990. V. 20. P. 150–155.

19. Alenius P., Nekrasov A., Myrberg K. The baroclinic Rossby-radius in the Gulf of Finland // Cont. Shelf Res. 2003. V. 23, N 6. P. 563–573.

20. Preventive methods for coastal protection: Towards the use of ocean dynamics for pollution control / Eds. Soomere T., Quak E. Springer, 2013. 442 p.

21. Madec G., Delecluse P., Imbard M., Levy C. OPA 8.1 Ocean General Circulation Model reference manual. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL). France: 1998, N 11. 91 p.

22. Madec G. NEMO ocean engine. Version 3.4. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France: 2012, N 27. 367 p.

23. Liu H., Holt J. T. Combination of the Vertical PPM Advection Scheme with the Existing Horizontal Advection Schemes in NEMO, MyOcean Science Days. URL: http://mercator-myoceanv2.netaktiv.com/MSD 2010/Abstract/Abstract LIUhedong MSD 2010.doc, 2010. (дата обращения: 01.07.2014).

24. Rodi W. Examples of calculation methods for flow and mixing in stratified fluids // J. Geophys. Res. 1987. V. 92(C5). P. 5305–5328.

25. Galperin B., Kantha L. H., Hassid S., Rosati A. A quasi-equilibrium turbulent energy model for geophysical flows // J. Atmos. Sc. 1988. V. 45. P. 55–62.

26. Kantha L. H., Clayson C. A. An improved mixed layer model for geophysical applications // J. Geophys. Res. 1994. V. 99. P. 25,235–25,266.

27. Bougeault P., Lacarrère P. Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model // Mon. Wea. Rev. 1989. V. 117. P. 1872–1890.

28. Mellor G. L., Yamada T. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers // J. Atmos. Sci. 1974. V. 31. P. 1791–1806.

29. Gaspar P., Gregoris Y., Lefevre J.-M. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing Tests at station papa and long-term upper ocean study site // J. Geophys. Res. 1990. V. 95(C9). P. 16179–16193.

30. Umlauf L., Burchard H. A Generic Length-scale Equation for Geophysical Turbulence Models // J. Mar. Sys. 2003. V. 61, N 2. P. 235–265.

31. Umlauf L., Burchard H. Second-order Turbulence Closure Models for Geophysical Boundary Layers a Review of Recent Work // J. Mar. Sys. 2005. V. 25. P. 795–827.

32. Funkquist L. HIROMB, an operational eddy-resolving model for the Baltic Sea // Bulletin of the Maritime Institute in Gdansk. 2001. V. XXVIII, N 2. P. 7–16.

33. High Resolution Limited Area Modelling project HIRLAM. URL: http://hirlam.org (дата обращения: 01.02.2013).

34. Stålnacke P., Grimvall A., Sundblad K., Tonderski A. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea 1970–1993 // Environ. Monit. Assess. 1999. V. 58. P. 173–200.

35. NASA's OceanColor Web. URL: http://oceancolor.gsfc.nasa.gov/ (дата обращения: 01.07.2014).

36. BED — Baltic Environmental Database at Baltic Nest Institute. URL: http://nest.su.se/bed (дата обращения: 01.07.2014).


Review

For citations:


Vankevich R.E., Sofina E.V., Ryabchenko V.A. Modelling the spring-summer evolution of the thermohaline structure in the Gulf of Finland on the basis of a three-dimensional hydrodynamic model of high resolution. Fundamental and Applied Hydrophysics. 2015;8(2):3-9. (In Russ.)

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)