Preview

Fundamental and Applied Hydrophysics

Advanced search

Mapping of the Baltic Sea by the types of density stratification in the context of dynamics of internal gravity waves

https://doi.org/10.7868/S2073667318010057

Abstract

Zoning of the Baltic Sea was carried out according to the type of density stratification. Areas are marked out where the profile of the sea water density is well approximated by a two- or three-layer model. The values of the parameters of layered models, such as the depth of pycnoclines and the amplitude of the density jumps at the interfaces of the layers as a percentage of the total density change are determined. Such a zoning makes it possible to simplify the preliminary investigation of internal gravity waves in the considered region, effectively reducing it to the use of known analytical results for interfacial waves in layered fluid. It is also easy to carry out preliminary estimates of their kinematic and nonlinear characteristics. Variabilitу of these zones from winter to summer is discussed. Hydrological data for calculating the density field are taken from the database of the generalized numerical model of the environment (Generalized Digital Environmental Model Database, GDEM). In addition, calculated temperature and salinity data were used within the framework of the ocean model of the Rossby Center (RCO) for the Baltic Sea. For most points with close coordinates in RCO and GDEM, the type of density stratification is the same.

About the Authors

E. A. Rouvinskaya
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation


D. Y. Tyugin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation


O. E. Kurkina
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation


A. A. Kurkin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation


References

1. Alenius P., Myrberg K., Nekrasov A. The physical oceanography of the Gulf of Finland: a review. Boreal Env. Res. 1998, 3, 97— 125.

2. Serebryany A. N., Ivanov V. A. Study of Internal Waves in the Black Sea from Oceanography Platform of Marine Hydrophysical Institute. Fundamentalnaya i Prikladnaya Gidrofizika. 2013, 3, 34—45 (in Russian).

3. Mityagina M. I., Lavrova O. Yu. Satellite Observations of Eddy and Wave Processes in the Coastal Waters of the NorthEastern Black Sea. Earth Observation and Remote Sensing. 2009, 5, 72—79 (in Russian).

4. Mityagina M. I., Lavrova O. Yu. Radar survey of internal waves surface manifestations in non-tidal seas. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2010, 7, 1, 260—272.

5. Lavrova O. Yu., Mityagina M. I., Sabinin K. D. Manifestations of Internal Waves on the Sea Surface in NorthEastern Part of the Black Sea. Earth Observation and Remote Sensing. 2009, 6, 49—55 (in Russian).

6. Lavrova O. Yu., Karimova S. S., Mityagina M. I., Bocharova T. Yu. Operational satellite monitoring of the Black, Baltic and Caspian Seas in 2009—2010. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2010, 7, 3, 168—185 (in Russian).

7. Meier H. E. M., Döscher R., Coward A. C., Nycander J., Döös K. RCO-Rossby Centre regional Ocean climate model: Model description (version 1.0) and first results from the hindcast period 1992/93, Rep. Oceanogr. 26, Swed. Meteorol. Hydrol. Inst., Norrköping, Sweden, 1999. 102 p.

8. Kurkina O., Kurkin A., Soomere T., Rybin A., Tyugin D. Pycnocline variations in the Baltic Sea affect background conditions for internal waves. Proceedings of Baltic International Symposium (BALTIC), 2014 IEEE/OES, “Measuring and Modeling of MultiScale Interactions in the Marine Environment” May 26—29, 2014, Tallinn, Estonia, 2014. P. 1 — 8.

9. Leppäranta M., Myrberg K. Physical Oceanography of the Baltic Sea. Berlin, Heidelberg, New York, Springer, 2009. 378 p.

10. Holloway P., Pelinovsky E., Talipova T., Barnes B. A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf. J. Phys. Oceanogr. 1997, 27, 6, 871—896.

11. Holloway P., Pelinovsky E., Talipova T. A generalized Korteweg–de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res. 1999, 104/C8, 18333—18350.

12. Holloway P., Pelinovsky E., Talipova T. Internal tide transformation and oceanic internal solitary waves. Environmental Stratified Flows, ed. by: Grimshaw R. Boston: Kluwer, 2001, 29—60.

13. Ostrovsky L. A., Grue J. Evolution equations for strongly nonlinear internal waves. Phys. Fluids. 2003, 15, 2934—2948.

14. Grimshaw R., Pelinovsky E., Talipova T. Modeling internal solitary waves in the coastal ocean. Survey in Geophysics. 2007, 28, 2, 273—298.

15. Helfrich K. R., Melville W. K. Long nonlinear internal waves. Annu. Rev. Fluid Mech. 2006, 38, 395—425.

16. Talipova T. G., Pelinovsky E. N., Kurkina O. E., Didenkulova I. I., Rodin A. A., Pankratov A. S., Naumov A. A., Giniyatullin A. R., Nikolkina N. F. Finite-amplitude wave propagation in stratified fluid of variable depth. MODERN SCIENCE: Researches, Ideas, Results, Technologies. 2012, 2 (10), 144—150 (in Russian).

17. Talipova T. G., Kurkina O. E., Rouvinskaya E. A., Pelinovsky E. N. Propagation of solitary internal waves in two-layer ocean of variable depth. Izvestiya — Atmospheric and Ocean Physics. 2015, 51, 1, 89—97.

18. Grimshaw R., Pelinovsky E., Talipova T. The modified Korteweg-de Vries equation in the theory of large-amplitude internal waves. Nonlinear Processes in Geophysics. 1997, 4, 4, 237—350.

19. Rouvinskaya E. A., Kurkina O. E., Kurkin A. A. Improved nonlinear evolutionary equation for interfacial gravity waves in a symmetric three-layer fluid. Transactions of Nizhny Novgorod State Technical University n.a. R.E. Alekseev. 2010, 4 (83), 30—39 (in Russian).

20. Kurkina O. E., Kurkin A. A., Soomere T., Pelinovsky E. N., Rouvinskaya E. A. Higher-order (2+4) Korteweg-de Vries - like equation for interfacial waves in a symmetric three-layer fluid. Physics of Fluids. 2011, 23, 11, 116602–1–13.

21. Kurkina O. E., Kurkin A. A., Ruvinskaya E. A., Pelinovsky E. N., Soomere T. Dynamics of solitons in a nonintegrable version of the modified Korteweg-de Vries equation. JETP Letters. 2002, 95, 2, 91—95.

22. Kurkina O. E., Kurkin A. A., Rouvinskaya E. A., Soomere T. Propagation regimes of interfacial solitary waves in a three-layer fluid. Nonlinear Processes in Geophysics. 2015, 22, 117—132.

23. Makarov V. G., Budaeva V. D. Reconstruction of background water density distribution at the northeastern Sakhalin coast for the summer period based on parameterization of vertical watermass structure. REA Special Issue No. 1. Vladivostok, Dalnauka, 2009, 146—161 (in Russian).

24. Zonn I. S. et al. The Baltic Sea: encyclopedia. Moscow, International relationships, 2015. 572 p. (in Russian).


Review

For citations:


Rouvinskaya E.A., Tyugin D.Y., Kurkina O.E., Kurkin A.A. Mapping of the Baltic Sea by the types of density stratification in the context of dynamics of internal gravity waves. Fundamental and Applied Hydrophysics. 2018;11(1):46-51. (In Russ.) https://doi.org/10.7868/S2073667318010057

Views: 177


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)